Bio-CONCUR 2004 Preliminary Version

A Correct Abstract Machine for the Stochastic
Pi-calculus

Andrew Phillips! Luca Cardelli?

Microsoft Research
7 JJ Thomson Avenue
Cambridge, UK

Abstract

In this paper, an abstract machine is presented for a variant of the stochastic pi-
calculus, in order to correctly model the stochastic simulation of biological processes.
The machine is first proved sound and complete with respect to the calculus, and
then used as the basis for implementing a stochastic simulator. The correctness of
the stochastic machine helps ensure that the simulator is correctly implemented,
giving greater confidence in the simulation results. A graphical representation for
the pi-calculus is also introduced.

Key words: abstract machine, stochastic, pi-calculus, correctness,
implementation, graphical.

1 Introduction

Process calculi have been seen traditionally as a theoretical framework for the
study of concurrent computation, or as a paradigm for more practical con-
current languages, or as a specification language for software and hardware
systems that are coded in more pragmatic ways. Therefore, the direct im-
plementation of process calculi for the purpose of execution has never been
a high-priority enterprise. Recently, though, a range of process calculi have
been adapted or freshly developed for applications in biology, where highly
concurrent processes are the norm. In this application domain, process calculi
do not act as a paradigm, but as a direct way to describe systems. There-
fore, there is a new interest in correct implementation techniques for process
calculi, particularly if a quantitative aspect can be added for the purpose of
stochastic execution. This paper focuses on implementation techniques for a

! Email: anp@imperial.ac.uk
2 Email: luca@microsoft.com
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

PHiLLIPS AND CARDELLI

variant of the stochastic pi-calculus, in order to correctly model the stochastic
simulation of biological processes.

The remainder of the paper is structured as follows. In Section 2 a variant
of the stochastic pi-calculus is described, along with a corresponding graphical
representation. In Section 3 an abstract machine for the stochastic pi-calculus
is presented, and in Section 4 the machine is proved sound and complete
with respect to the calculus. An implementation of the stochastic machine is
described in Section 5, and preliminary simulation results are reported.

2 The Stochastic Pi-Calculus

The variant of the stochastic pi-calculus used in this paper is summarised
in Definitions 2.1, 2.2 and 2.3. The calculus is based largely on [5] and [1],
but uses a form of guarded replication presented in [7], which simplifies the
implementation. Each channel z is associated with a corresponding reaction
rate given by rate(z), and each reduction is labelled with the corresponding
rate as in [1].

P.Q ::=vx P Restriction = 0 Null
| P | @ Parallel |m.P+ % Action
| X Summation T o= z(n) Output
|

| Im.P Replication x(m) Input

Definition 2.1 Syntax of SPi

(1) QEP/\PLP’/\P’EQ’ = QLQ’

(2) PP = wvzP - vaP

(3) rPp-pr = P|QL>P’]Q
(4) (2(n).P +3) | (2(m)Q+ %) ™5 P | Qujmy

Definition 2.2 Reduction in SPi

A graphical syntax for the pi-calculus is presented in Figure 1, which cor-
responds to the written syntax of Definition 2.1. According to Figure 1, a
graphical process is a tree of nodes, where a Restriction node consists of a
dotted line linking the restricted name to the corresponding process, and a
Parallel node consists of two adjacent processes enclosed in a box. A Summa-
tion node is a null node with zero or more labelled arcs, and a Replication node
is a bang node with a single labelled arc. Each arc connects to a process, and
is labelled with an input or output action. For convenience, links between
nodes in the tree can be encoded in order to represent recursive processes,

2

PHiLLIPS AND CARDELLI

(5) P=.Q = P=Q

(6) Plo=P

7) P1Q=q|P

(5) PI@QIR)=(P|Q)|R

9) ln. P=n.(P|!m.P)+0
(10) g m(P) = va(P|Q)=P|vax@Q

(11) vr0=0

(12) vrvy P=vyvx P

(13) TP+ P+Y=r.P +7P+%
(14) r=Y = aP+4+YX=rP+Y

Definition 2.3 Structural congruence in SPi

where a link is a labelled arc with a double-headed arrow. Each node P with
an inbound link is encoded as vz (1z().P | z()), and each link to this node
with label 7 is encoded as m.z(), where the scope of x is extended accordingly.

®' @: P = 'rle"ﬁ;('@ Restriction : - O N
Parallel b2 Action
®0 GRC

Summation . : = xX<n> Output

G/ H\E:) Replication x(m) Input

Figure 1. Graphical SPi Syntax

The graphical syntax can be used to model the regulation of gene ex-
pression by positive feedback based on [9], as shown in Figure 2, where each
parallel process describes the behaviour of a different molecule or entity in
the system. For clarity, certain nodes in the figure are annotated with names,
but the names themselves do not have any semantic meaning. According to
Figure 2, when the Replication node !Protein A receives an input on chan-
nel protein A, a new protein A is spawned in parallel. Graphically, this is
represented by spawning a parallel copy of the graph which follows the input
on protein_A. Each protein A can bind with a protein T'F' by sending pri-
vate unbind, send, and remove channels on the bind channel. Once bound, A
can send a protein tail to TF on the send channel. After TF unbinds from
A, it can use its newly acquired tail to increase transcription promotion of
DNA Aor DNA TF, which are subsequently transcribed into RNA A or
RNA _TF at a higher rate, which in turn can be translated into A or TF

3

PHiLLIPS AND CARDELLI

proteins, resulting in a positive feedback loop. A single Proteins process is
used to represent the basic functions of degradation, transcription and trans-
lation performed by other proteins in the organism. Additional details can be
found at [6].

send<tai |l >

Bound A Bound_aTF

remove()

degr ade() unbi nd()

unbi nd<> i é
tail <>
bi nd<unbi nd, send, r enove> send(tail)
renove<> degr ade()

b : degr ade() b r enove()
few Unbi ek, b unbi nd() O

new send ,

1
"new rem)ve:: bi nd(unbi nd, send, r enove)
/" TF

protein_A() . degr ade()

: protei n_TF() b
1
transl ate() transl ate() p FLPOUE 1)1
degrade’ ()

rna_A() rna_TF() é

IRNA_A I RNA_TF
transcribe’ () transcribe’ ()

degr ade<>

rna_A<> + degrade’ <> Q rna_Tr<>

. + transcribe<> transcribe
tatl () transcribe() + transcribe <> tail () 0
+ transl at e<>
T

Figure 2. Regulating Gene Expression by Positive Feedback [9]

3 The Stochastic Pi-Machine

3.1 Approach

The Stochastic Pi-Machine (SPiM) is a formal description of how a stochastic
pi-calculus process can be executed. The machine is inspired by recent work on
abstract machines for process calculi [7,12] and uses a list syntax, which is close
to an implementation language. The SPi-Machine executes a given process P
by first encoding P into a list of summations with a number of top-level private
names. The machine then uses a stochastic selection algorithm based on 2]
to choose a particular channel x on which to perform a communication. The
procedure is repeated until no more communications are possible. A detailed
description of the SPi-Machine is given in the remainder of this section.

4

PHiLLIPS AND CARDELLI

3.2 Encoding

In order to execute a given process P, the SPi-Machine first needs to encode P
into a suitable machine term. The set of machine terms is denoted by SPiM,
and individual machine terms V,U are defined using lists A, B. According
to Definition 3.1, a machine term V is a list with zero or more restricted
names, and a list A is either an empty list [| or a list containing one or more
summations Y. Note that summations in SPiM are identical to summations
in SPi.

V.U ::=vxV Restriction
A List
A B = | Empty
12:: A Summation
Definition 3.1 Syntax of SPiM

The SPi-Machine encodes a given process P into a machine term using an
encoding function (P). According to Definition 3.2, a process P is encoded by
adding it to an empty list [] using a construction operator o.

(P)=Po]
Definition 3.2 Encoding

The construction operator PoV adds a process P to an arbitrary machine
term V', producing an updated machine term as a result. According to Defin-
ition 3.3, if a process P is added to a term vz V' containing a private name x,
then P is added to V' and the scope of x is extended to the top level, provided
x is not known to P (15). Once the scope of each private name has been
extended in this way, the process P can be added to the remaining list A.
The null process 0 is not added to the list (16), and the parallel composition
process P | @ is split so that each parallel process is added separately (17).
The restriction process vy P is modified by replacing y with a fresh name =z,
the scope of z is extended to the top level and the process P/, is added to
the list (18). The replicated action !7.P is expanded to a summation consist-
ing of a single action, and the resulting summation is added to the list (19).
Finally, the non-empty summation 7.P + 0 is placed at the head of the list
(20).

3.8 Execution

Once a process has been encoded to a machine term using the construction
operator, it can then be executed by the machine. In general, a machine term

5

PHiLLIPS AND CARDELLI

(15) ng fn(P) = PowzV)2vz(PoV)

(16) 0ocAZ2A

(1) (P|Q)oA2PoQoA

(18) v fn(PoA) = (vyP)oAZvx(Py oA

(19) lr.Po A% (r.(P|!n.P)+0)o A
(20) (T P+X)o A2 (n.P+X):A

Definition 3.3 Construction in SPiM

is a list of summations with a number of top-level private names:
vry vy . vey (B S y])

A given term is executed by the machine in steps, according to a labelled
reduction relation ——. The relation V' —— V' is true if the machine can
transform a term V into a term V' with rate r during a single execution step.
According to Definition 3.4, if a term V' can reduce to V’ with rate r then this
reduction can also take place if V' contains a private name z (21). This rule
allows the machine to execute a list A with an arbitrary number of private
names. The machine executes a list A by first choosing the next channel x on
which to perform a communication, using the function Next(A). The machine
then uses a selection operator > to choose a summation z(m).P + ¥ with an
input on channel x and another summation z(n).QQ + ¥’ with an output on
x. The value n is then sent along channel x and bound to m in process P.
The summations ¥ and X' are discarded, and the processes Py, and @ are
added to the remainder of the list (22).

(21) V-5V o= vV s ounV
r = Next(A)
(22) A () P+S)sA = AP 0QoA”

NA" = (x(n).Q + X)) A”
Definition 3.4 Reduction in SPiM

The selection operator > chooses a particular action from inside a list by
first moving a summation to the head of the list and then moving an action
to the front of the summation. The relation A > B is true if the list A can
be re-arranged to match list B. According to Definition 3.5, a list can match
itself (23) or it can be re-arranged by bringing one of its summations to the
head of the the list (24). Finally, a summation at the head of a list can be
re-arranged by bringing one of its actions to the front of the summation (25).
Note that, for efficiency reasons, the selection operator only allows a single

6

PHiLLIPS AND CARDELLI

action inside a single summation to be selected, leaving the remainder of the
list unaltered. This prevents the contents of the list from being permuted
arbitrarily.

(23) A-A

(24) A=Y A =NuA-Y one A

(25) YuAs (7 PP+Y)uA= (rP+Y) A= (P +7P+Y):A
Definition 3.5 Selection in SPiM

The next reaction channel x and the reaction delay 7 are calculated using
the algorithm described in Definition 3.6. The algorithm is based on the
Gillespie algorithm [2]|, which uses a notion of channel activity in order to
stochastically select the next reaction channel. A similar notion of channel
activity is defined for the SPi-Machine, where Act,(A) denotes the activity
of channel x in list A. The activity corresponds to the number of possible
combinations of inputs and outputs on channel x in A, and is defined by:

Act,(A) = (Iny(A) * Out, (A)) — Mix, (A)

where In,(A) and Out,(A) are the number of unguarded inputs and outputs
on channel z in A, respectively, and Mix,(A) = the sum of In,(%;) x Out,(%;)
for each summation Y; in A. The formula takes into account the fact that an
input and an output in the same summation cannot interact, by subtracting
Mix,(A) from the product of the number of inputs and outputs on x. Once
the values = and 7 have been calculated, the machine increments the reaction
time by delay 7 and randomly chooses one of the available reactions on x with
equal probability, using the selection operator. This is achieved by randomly
choosing a number n € [1..In,(A)] and selecting the nth input in A, followed
by randomly selecting an output from the remaining list in a similar fashion.

(i) For all x € fn(A) calculate a, = Act,(A) * rate(x)
(ii) Store non-zero values of a, in a list (z,,a,), where p € 1...M.
(iti) Calculate ag = 3.2 a,
(iv) Generate two random numbers ny ny € [0, 1] and calculate 7, o such that:
7= (1/ap) In(1/ny)

p—1 2
E a, < Ngag < g a,
v=1 v=1

(v) Next(A) =z, and Delay(A) = .
Definition 3.6 Calculating Next(A) and Delay(A) according to [2]

PHiLLIPS AND CARDELLI

For improved efficiency, the machine can store a list of tuples for each
channel x in A, of the form:

z,In,(A), Out,(A), Mix, (A), a,

After each reduction has been performed, it is only necessary to update the
values for those channels that were affected by the reduction, and then use
Definition 3.6 on the updated values to choose the next reaction channel and
calculate the delay.

4 Correctness of the Stochastic Pi-Machine

4.1 Approach

The correctness of the SPi-Machine is expressed in terms of five main prop-
erties: safety, soundness, completeness, termination and duration. Safety en-
sures that the machine does not produce any runtime errors, and Soundness
ensures that the machine can only perform valid execution steps. Complete-
ness is a much stronger property, which ensures that the machine can accu-
rately execute all possible behaviours of the calculus. Termination ensures
that the machine does not loop forever unnecessarily, and Duration ensures
that each reduction in the machine takes the same length of time as the cor-
responding reduction in the calculus, and vice-versa. The details of the proofs
can be found at [6].

4.2 Safety

Safety ensures that the machine does not produce any runtime errors when
executing a given term V. According to Lemma 4.1, if the machine reduces a
term V to V' with rate r, then V’ will be a valid machine term.

Lemma 4.1 VV.V € SPIMAV - V' = V' € SPiM

Proof By Lemma 4.2, Lemma 4.3 and by induction on Definition 3.4 of
reduction in SPiM. a

Lemma 4.2 VA € SPIM.A - B = B € SPiM
Proof By induction on Definition 3.5 of selection in SPiM. O
Lemma 4.3 VV.YP.V € SPIM A P € SPi = PoV € SPiM

Proof By induction on Definition 3.3 of construction in SPiM. O

4.8 Soundness

Soundness ensures that each reduction in the machine corresponds to a valid
reduction in the calculus. In order to prove the soundness of the machine it is
necessary to define a decoding function [V], which maps a given machine term
V' to a corresponding calculus process. According to Definition 4.4, a term

8

PHiLLIPS AND CARDELLI

v 'V with a private name x is mapped to the decoded term [V] with a private
name z (26). The null list is mapped to the null process (27), and a summation
at the head of a list is mapped to a summation in parallel with the decoded
list (28). Lemma 4.5 ensures that the decoding function is well-defined.

(26) [va V]2 vz [V]
(27) [y=o0
(28) [Z:A] 22 | [4]

Definition 4.4 Decoding

Lemma 4.5 VV.V € SPiM = [V] € SPi
Proof By induction on Definition 4.4 of decoding in SPiM. O

Once a decoding from machine terms to calculus processes has been defined
in this way, it is possible to state and prove the soundness of the machine.
According to Theorem 4.6, if the machine can reduce a term V' to V'’ with rate
r, then the calculus can perform a corresponding reduction with the same rate
on the decoding of V.

Theorem 4.6 VV.V € SPIMAV - V' = [V] - [V']

Proof By Lemma 4.7, Lemma 4.8 and by induction on Definition 3.4 of
reduction in SPiM. O

Lemma 4.7 VA A€ SPIMA A - B = [A] =[B]
Proof By induction on Definition 3.5 of selection in SPiM. O
Lemma 4.8 VV.VYP.V € SPIMAP € SPi= [Po V] =P |[V]

Proof By induction on Definition 3.3 of construction in SPiM. O

4.4 Completeness

Completeness ensures that each reduction in the calculus can be matched
by a corresponding reduction in the machine, up to re-ordering of machine
terms. In order to prove the completeness of the machine it is necessary to
define a structural congruence relation V' = U, which allows a term V to
be re-ordered to match a term U. According to Definition 4.9, terms are
structurally congruent up to alpha-conversion (29), unused private names can
be discarded (30), private names can be permuted (31), summations inside
a list can be permuted (32)-(33) and actions inside a summation can also be
permuted (34)-(35).

An important property of structural congruence is that congruent terms
should be able to perform corresponding reductions that preserve the congru-
ence relation. This property needs to be proved explicitly for the machine,

9

PHiLLIPS AND CARDELLI

(29) V=,U=V=U

(30) g (V) = vaV=V

(31) vevyV =vyvzV

(32) YuY A=Y YA

(33) A=A = XuA=32A

(34) (r.P+a' P +X):A=(r".P'+7.P+Y):A
(35) YuA=Y A= (r P+ YY) A=(r P+ YY) A
Definition 4.9 Structural Congruence in SPiM

since structural congruence is not used in the definition of reduction. The
omission is deliberate, and avoids the need to examine all possible re-orderings
of a term in order to perform a reduction. As a result, the efficiency of the
machine is significantly improved from O(In) to O(n), where n is the num-
ber of summations in the machine. According to Lemma 4.10, if the machine
can reduce a term V to V' with rate r, then it can reduce any term that is
congruent to V' to a term that is congruent to V', with the same rate.

Lemma 4.10 VV.V € SPIMAU =V AV = V' = 30U U AU =V
Proof By induction on Definition 4.9 of structural congruence in SPiM. 0O

Once a structural congruence relation has been defined in this way, it is possi-
ble to state and prove the completeness of the machine. According to Theorem
4.11, if the calculus can reduce a process P to P’ with rate r, then the machine
can perform a corresponding reduction with the same rate on the encoding of
P, up to structural congruence.

Theorem 4.11 VP.P € SPiA P — P' = (P) ——= (P).

Proof By Lemma 4.12 and by induction on Definition 2.2 of reduction in SPi,
where the rule for parallel composition (3) is expanded over the remaining rules

(1), (2), (4). -
Lemma 4.12 P=Q = (P) = (Q)

Proof By induction on Definition 2.3 of structural congruence in SPi. O

4.5 Termination

Termination ensures that the machine stops executing if there are no more
reductions to be performed. This prevents a given simulation from looping
forever unnecessarily. According to Theorem 4.13, if a process P cannot re-
duce, then the corresponding machine term cannot reduce either.

Theorem 4.13 VP.P € SPiAP /— = (P]) /-
10

PHiLLIPS AND CARDELLI

Proof By Theorem 4.6 and by basic relationships between encoding and de-
coding. O

4.6 Duration

The Gillespie algorithm has been proved correct as a means of stochastically
selecting a reaction channel [2]|, and soundness and completeness both ensure
that the machine performs each reduction — with the correct rate. However,
these properties are not sufficient to express the correctness of the stochastic
machine, as illustrated by the following example:

Py 2z(n).P+z(n).P | x(m).Q
Py 2x(n).P|x(m).Q

In this example, both P, and P, can reduce to the same process P | Qn/m},

with the same reduction T%), yet the reduction is twice as fast in process P;

as it is in process P,. This is because two competing actions with exponential
distributions of rate r can be viewed as a single action with an exponential
distribution of rate 2r, as explained in [8,1]. In order to distinguish between
such processes, it is necessary to take into account the number of possible
interactions on a chosen channel z in a list A, i.e. the activity Act,(A) of x in
A. This can be achieved by defining a corresponding notion of channel activity
for calculus processes, and ensuring that the activity is preserved by decoding
and encoding, as described in Proposition 4.14 and Proposition 4.15 respec-
tively. This ensures that reactions in the machine have the same duration as
reactions in the calculus, and vice-versa.

Proposition 4.14 VV € SPiM.Act, (V) = Act,([V])

Proposition 4.15 VP € SPi.Act,(P) = Act,((P))

5 Implementation

5.1 Approach

A prototype simulator has been implemented in a functional language (OCaml),
based on the abstract machine specification. The simulator consists of a sin-
gle binary executable, which reads in a source file and simulates reactions for
a given duration. The simulation results are stored in a log file as a list of
comma-separated values, which can be visualised using third-party software.
In addition, a polymorphic type system for channel communication has been
implemented based on [12], and a static type-checker accurately reports syntax
and type errors before a given source file is executed.

11

PHiLLIPS AND CARDELLI

5.2 Data Types

The terms of the machine can be readily implemented as functional datatypes.
By definition, a term V is a list of summations with a number of top-level
private names vz, ...vxy A. In practice, however, the privacy of these top-
level names does not need to be implemented explicitly, since each simulator
will have its own private address space for storing and manipulating names.
Therefore, a machine term can be implemented as a list of summations, where
a summation is a list of (action, process) pairs. A name is implemented as
a (string, float) pair, where the float corresponds to the reaction rate. The
implementation also allows constants and tuples to be sent and received over
channels, using value and pattern data types accordingly.

type term = ((action*process) list) list

type process = Null

Parallel of process*process
Restriction of name*process
Replication of (action*process)
Summation of (action*process) list

type action = Input of value*pattern

| Output of value*value

5.8 Encoding

The simulator executes a pi-calculus source file, written in a standard ascii
syntax, by first parsing the file to produce a corresponding process. The
process is then encoded to a term using a cons function to add the process
to an empty list. The cons function is a direct implementation of the con-
struction operator o. In particular, a restriction process Restriction(n,p)
is added to a term by a generating a fresh name based on n, substituting n
with this fresh name in p using the bind function, and adding the resulting
process to the list. The function fresh(n : name) uses a naming convention to
guarantee that each generated name is globally fresh for the duration of the
simulation. This can be achieved by appending a time stamp (or a suitable
global counter) to the name using a reserved suffix such as ~. If the generated
name is globally fresh then the restriction can be brought to the top level ac-
cording to Definition 3.3, which means that it does not need to be explicitly
represented by the machine.

let rec cons (p:process) (l:term) = match p with
Null -> 1

Parallel(p,p’) -> cons p (cons p’ 1)
Restriction(n,p) -> cons (bind (fresh n) n p) 1
Replication(a,p’) -> [a,Parallel(p’,p)]::1
Summation(s) -> s::1

12

PHiLLIPS AND CARDELLI

5.4 FEzxecution

The implementation uses the function reduce(1 : term) to perform a single
execution step on a term 1. The function gillespie(1l : term) returns a chan-
nel inside the list that is able to communicate, along with the time elapsed.
Both of these values are calculated according to the stochastic algorithm in
Definition 3.6. The function select(a: action)(1l : term) randomly chooses
an action from inside the list 1 that matches the action a. The match is per-
formed based solely on the type of the action and the channel, so arbitrary
default constants are used for the input pattern mO and output value v0 in the
arguments.

let reduce (l:term) =
let (x:value),(t:float) = gillespie 1
in match select (Input(x,m0)) 1 with
Some ((Input(x,m),p),s,1l) -> (
match select (Output(x,v0)) 1 with
Some ((Output (x’,v),p’),s’,1) ->
if x==x’
then Some(t,cons (bind v m p) (cons p’ 1))
else None
| -> None

| _ -> None

The simulator repeatedly applies the reduce function to the list until no more
reductions are possible, at which point the simulation terminates. After each
reduction step, the machine logs the time elapsed and the quantity of top-
level inputs and outputs on each channel. The results are stored in a file as
a comma separated list, which can be visualised using third party software.
In order to improve the efficiency of the machine, the reduce function can be
modified to keep track of the total number of inputs, outputs and mixed sums
as described in Section 3.

5.5 Simulation Results

The implementation has been used to simulate the regulation of gene expres-
sion by positive feedback [9], described in Section 2. As shown in Figure 3 and
in accordance with [9], higher levels of Protein A are observed in the presence
of the T'F' gene and lower levels are observed when the T'F' gene is disabled.

The implementation has also been used to simulate a wide variety of chem-
ical reactions and biological systems, including enzymatic reactions, a circa-
dian clock, and a model of the cell cycle control in eucaryotes [4]. Details of
simulation results are available from [6].

13

PHiLLIPS AND CARDELLI

n
=
=
-
=

v _

‘W

o
=
=

mo

= =

-
= =
= =

Protein & [molecules)
Fratein & [molecules]
3
'{

™

A
1

zi 0 din 50 £] 10 zi 0 q0 50 L]

=
=

Time 5] Time [=]

Figure 3. Protein A molecules v.s. time in presence (left) and absence (right) of TF

6 Related Work

The BioSPI system [9] is an existing implementation of a biochemical variant
of the stochastic m-calculus. The system executes a process by compiling it to
an FCP procedure, which is then executed by the FCP Logix platform [11].
Channel data structures are used to maintain stochastic information and syn-
chronize send and receive requests, in accordance with the Gillespie algorithm.
Unlike SPiM, there is no formal definition of an abstract machine, and the im-
plementation is specific to FCP Logix. In addition, according to [9] BioSPI
calculates the activity of a channel z in P by In,(P) * Out,(P). This assumes
that there can never be both an input and an output on the same channel in
the same summation. A special rate law is defined for homodimerization reac-
tions of the form X+ z(n).P+x(m).Q | X'+ z(n).P'+x(m).Q’, but this does
not account for arbitrary combinations of input and output. Furthermore,
due to scope extrusion, it is not clear whether such arbitrary combinations
can be avoided statically, without limiting the expressiveness of the calculus.
SPiM attempts to address this issue by giving a more general definition of
channel activity, which accounts for mixed inputs and outputs using Mix, (P).
Homodimerization reactions are also included in this definition, provided the
reaction rate of the corresponding channel x is halved in the model. It is also
worth noting that, unlike SPiM, the current BioSPI system does not imple-
ment a type system for channel communication. The BioSPI system has also
been extended to handle membrane interactions [10].

Another implementation of the stochastic pi-calculus is the StoPi simulator
described in [1], where fully general sums are supported. A stochastic calculus
is formally defined, and the implementation architecture is also described in
detail, but the paper does not include an abstract machine that maps readily
to program code, or prove the correctness of the machine. An alternative
stochastic simulator is the PEPA system [3|, which can also be used to simulate
biological processes. However, PEPA does not include a notion of name-
passing, which is important for modelling chemical bonding and is one of the
main features of the pi-calculus.

14

PHiLLIPS AND CARDELLI

7 Conclusion

We have described an abstract machine for a basic stochastic process calculus,
and verified some of its properties. We hope that this will form a framework
on which to design and build implementations of richer stochastic process cal-
culi, and possibly of very different, biologically inspired calculi that share a
stochastic architecture. We also plan to incorporate a graphical front-end to
the current simulator, and generate the corresponding pi-calculus code auto-
matically.

References

[1] Bloch, A., B. Haagensen, M. K. Hoyer and S. U. Knudsen, “The
StoPi-calculus and Simulator,” Article and runtime system available from
http://www.cs.auc.dk/“steffen/dat4 /stopi/.

[2] Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, J.
Phys. Chem. 81 (1977), pp. 2340-2361.

[3] Gilmore, S. and J. Hillston, The PEPA Workbench: A Tool to Support a Process
Algebra-based Approach to Performance Modelling, in: Proceedings of MTTCPE,
number 794 in LNCS (1994), pp. 353-368.

[4] Lecca, P. and C. Priami, Cell cycle control in eukaryotes: a biospi model, in:
BioConcur’03 (2003).

[5] Milner, R., “Communicating and Mobile Systems: the m-Calculus,” 1999.

[6] Phillips, A, “The Stochastic Pi-Machine,” Available from
http://www.doc.ic.ac.uk/ anp/spim/.

[7] Phillips, A., N. Yoshida and S. Eisenbach, A distributed abstract machine for
bozed ambient calculi, in: ESOP’04, LNCS (2004).

[8] Priami, C., Stochastic m-calculus, The Computer Journal 38 (1995), pp. 578-
589, proceedings of PAPM’95.

[9] Priami, C., A. Regev, E. Shapiro and W. Silverman, Application of a stochastic
name-passing calculus to representation and simulation of molecular processes,
Information Processing Letters .

[10] Regev, A., E. M. Panina, W. Silverman, L. Cardelli and E. Shapiro, Bioambients:
An abstraction for biological compartments, in: Theoretical Computer Science,
Special Issue on Computational Methods in Systems Biology, to Appear.

[11] Silverman, W., M. Hirsch, A. Houri and E. Shapiro, The logiz system user
manual, version 1.21, in: E. Shapiro, editor, Concurrent Prolog: Collected Papers
(Volume II), MIT Press, London, 1987 pp. 46-77.

[12] Turner, D. N., “The Polymorphic Pi-Calculus: Theory and Implementation,”
Ph.D. thesis (1996), cST-126-96 (also published as ECS-LFCS-96-345).

15

	Introduction
	The Stochastic Pi-Calculus
	The Stochastic Pi-Machine
	Approach
	Encoding
	Execution

	Correctness of the Stochastic Pi-Machine
	Approach
	Safety
	Soundness
	Completeness
	Termination
	Duration

	Implementation
	Approach
	Data Types
	Encoding
	Execution
	Simulation Results

	Related Work
	Conclusion
	References

