The Cell Cycle Switch Computes Approximate Majority
 Luca Cardelli, Microsoft Research \& Oxford University
 Joint work with Attila Csikász-Nagy, Fondazione Edmund Mach \& King's College London
 Northwestern University, CS+X Colloquium, 2014-04-29

Cells Compute

- No survival without computation!
- Finding food
- Avoiding predators
- How do they compute?
- Clearly doing "information processing"
- But can we actually catch nature running an (optimal) algorithm?

Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang and James E. Ferrell, Jr., 1996, Proc. Natt. Acad. Sci. USA, 93, 10078-10083.

Abstract Machines of Biology

Regulation

Biological Languages

Biological Networks

How to build a good switch

The Cell Cycle Switch

Universal control mechanism regulating

 onset of M-phasePaul Nurse

- This basic network is universal in Eukaryotes [P. Nurse]
- The switching function and the basic network is the same from yeast to us.
- In particular detail, in frog eggs:

Double positive feedback on x Double negative feedback on x

No feedback on y
Why ???

Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos

Bela Novak ${ }^{+}$and John J. Tyson ${ }^{+}$

Separment of Biology, Virginia Polytechnici Institute and Stata Universit, Blacksburg. Virinina 20060.0406, USA

- The function is very well-studied. But why this network structure?
- That is, why this peculiar algorithm?

How to Build a Good Switch

-What is a "good" switch?

- We need first a bistable system: one that has two distinct and stable states. I.e., given any initial state the system must settle into one of two states
- The settling must be fast (not get stuck in the middle for too long) and robust (must not spontaneously switch back)
- Finally, we need to be able to flip the switch by external inputs
- "Population protocol" switches
- Identical agents ('molecules') in a population start in some state, say x or y
- A pair of agents is chosen randomly at each step, they interact ('collide') and change state
- The whole population must eventually agree on a majority value (all-x or all-y) with probability 1

A Bad Algorithm

- Direct Competition

catalysis -o

- x catalyzes the transformation of y into x
- y catalyzes the transformation of x into y
- when all-x or all-y, it stops

$$
\begin{aligned}
& y+x \rightarrow x+x \\
& x+y \rightarrow y+y
\end{aligned}
$$

- This system has two end states, but
- Convergence to an end state is slow (a random walk)
- Any perturbation of an end state can start a random walk to the other end state (hence not really bistable)

A Very Good Algorithm

- Approximate Majority (AM)
- Third, undecided, state b
- Disagreements cause agents to become undecided
- Undecided agents believe any non-undecided agent
- With high probability, for n agents
- The total number of interactions before converging is $O(n \log n)$ \Rightarrow fast (optimal)

- The final outcome is correct if the initial disparity is $\omega(\operatorname{sqrt}(n) \log n)$ \Rightarrow solution states are robust to perturbations
- Logarithmic time bound in parallel time
- Parallel time is the number of steps divided by the number of agents
- In parallel time the algorithm converges with high probability in $O(\log n)$

Dana Angluin • James Aspnes • David Eisenstat

A Biological Implementation

Approximate Majority (AM)

Bistable
Even when $x=y$ (stochastically)
Fast
$O(\log n)$ convergence time
Robust to perturbation above a threshold, initial majority wins whp

Dana Angluin • James Aspnes • David Eisenstat
A Simple Population Protocol for Fast Robust Approximate Majority

Figure 1. Basic Ingredients of the Model
Theory
Theoretical Analysis of Epigenetic
Cell Memory by Nucleosome Modification

.

Back to Biology

- The AM algorithm has ideal properties for settling a population into one of two states
- Seems like this would be useful in Biology
- Can we find biological implementations of this algorithm?
- Could it be related to the cell cycle switch?

Algorithms and Dynamical Systems

Influence Nodes

Usually modeled by sigmoid (e.g. Hill or Reinitz) functions

Functional Motifs in Biochemical Reaction Networks

$\frac{d X_{i}}{d t}=r \frac{\left[A\left(1-X_{i}\right)-B_{1} X_{]}\right]}{A_{i}+B_{t}}, i=1, \ldots, N$,

activation
inhibition
catalysis
Approximate Majority

Nature fixed the bug!

- There is another known feedback loop by which x suppresses s "in retaliation" via the so-called Greatwall loop; s and x are antagonists: they are the two halves of the switch, mutually inhibiting each other (through intermediaries).
- Also, s and t happen to be the same molecule (=s)

- The "classical" cell cycle switch seems to be only half of the picture: the extra feedback completes it algorithmically and makes it as good as AM.

In Previous Work

- GW is better!
- Fully switchable, just as fast as AM
- GW emulates AM

- That same week:
- The Greatwall loop is a necessary component of the switch
- So, nature fixed CC!

Networks and Morphisms

A Theory of Network Emulation
 (with thanks to David Soloveichik)

- So far, evidence is empirical
- Specific simulations based on a choice of parameters
- But indeed...
- We can show that, GW, NCC, etc. are exactly and always as good as AM
- Where exactly means numerically as good, not just in the same complexity class
- And always means for any choice of rates and initial conditions
- A network emulates another network:
- When it can exactly reproduce the kinetics of another network for any choice of rates and initial conditions
- We aim to show that the cell cycle switch can emulate AM in that sense
- And moreover that the emulation is algorithmic: it is determined by network structure

Network Emulation: MI emulates AM

- For any rates and initial conditions of AM, we can find some rates and initial conditions of MI such that the (6) trajectories of MI retrace those (3) of AM :

(6 species on 3 trajectories)

(3 species on 3 trajectories)

$$
\begin{gathered}
\text { initialize: } \\
z=x \\
\sim y=x \\
\left(y_{2}=x_{0}\right. \\
y_{1}=x_{1} \\
\left.y_{0}=x_{0}\right)
\end{gathered}
$$

- How do we find these matching parameters? By a network morphism!

Emulation is a Network Morphism

A mapping of species and reactions

any initial conditions

$z_{0}=y_{2}=x_{0}$
$z_{1}=y_{1}=x_{1}$
$z_{2}=y_{0}=x_{2}$
initial conditions:
less trivial than you might think:
it need not preserve the out-degree of a node!

Network Emulation: NCC emulates MI

- For any rates and initial conditions of MI we can find some rates and initial conditions of NCC such that the (18) trajectories of NCC retrace those (6) of MI

- Why does this work so well?

Kinetic Emulation

When can a Network Emulate Another?

-What kind of morphisms guarantee emulation?

- do they preserve network structure?
- do they preserve stoichiometry?

Chemical Reaction Networks

- A CRN is a pair (S, R) where
- $S=\left\{s_{1}, \ldots, s_{n}\right\} \quad$ a finite set of species

$$
\begin{aligned}
& S=\{A, B, C\} \\
& R=\{r\}
\end{aligned}
$$

- $R=\left\{r_{1}, \ldots, r_{m}\right\} \quad$ a finite set of reactions
$r=2 A+B \rightarrow^{k} A+3 C$

$$
\rho \rightarrow^{k} \pi
$$

with stoichiometric numbers $\rho, \pi \in \mathbb{N}^{S}$

- The stoichiometry of s in $\rho \rightarrow^{k} \pi$ is:

$$
\begin{aligned}
\eta\left(s, \rho \rightarrow^{k} \pi\right) & =\pi_{s}-\rho_{s} \\
\varphi\left(s, \rho \rightarrow^{k} \pi\right) & =k \cdot\left(\pi_{s}-\rho_{s}\right)
\end{aligned}
$$

$\eta(A, r)=-1 \quad$ net stoichiometry
$\varphi(A, r)=-k \quad$ (instantaneous) stoichiometry

CRN Morphisms

A CRN morphism from (S, R) to (\hat{S}, \hat{R})
written $m \in(S, R) \rightarrow(\hat{S}, \widehat{R})$
is a pair of maps $m=\left(m_{\mathcal{S}}, m_{\mathcal{R}}\right)$
a species map $m_{\mathcal{S}} \in S \rightarrow \hat{S}$
a reaction map $m_{\mathcal{R}} \in R \rightarrow \hat{R}$
(sometimes omitting the subscripts on m)
We are interested in morphisms that are not injective, that represent refinements of simpler networks

Mappings (symmetries) between two networks

3 Key Morphisms

- A morphism $m \in(S, R) \rightarrow(\hat{S}, \hat{R})$ is
- a CRN homomorphism
if $m_{\mathcal{R}}$ is determined by $m_{\mathcal{S}}$:

$$
m_{\mathcal{R}}\left(\rho \rightarrow^{k} \pi\right)=m_{\mathcal{S}}(\rho) \rightarrow^{k} m_{\mathcal{S}}(\pi) \quad \Rightarrow \quad \boldsymbol{m}_{\mathcal{S}}{ }^{\mathrm{T}} \cdot \boldsymbol{\varphi}=\widehat{\boldsymbol{\varphi}} \cdot \boldsymbol{m}_{\mathcal{R}}{ }^{\mathrm{T}}
$$

- a CRN reactant morphism if $m_{\mathcal{R}}$ is determined by $m_{\mathcal{S}}$ on reactants. $\exists \hat{k}, \hat{\pi}$:

$$
m_{\mathcal{R}}\left(\rho \rightarrow^{k} \pi\right)=m_{\mathcal{S}}(\rho) \rightarrow^{\hat{k}} \hat{\pi} \quad \Leftrightarrow \quad \boldsymbol{m}_{\mathcal{S}}{ }^{\mathbf{T}} \cdot \boldsymbol{\rho}=\hat{\boldsymbol{\rho}} \cdot \boldsymbol{m}_{\mathcal{R}}{ }^{\mathrm{T}}
$$

- a CRN stoichiomorphism if:
def.
$\boldsymbol{\varphi} \cdot \boldsymbol{m}_{\mathcal{R}}=\boldsymbol{m}_{\boldsymbol{S}} \cdot \hat{\boldsymbol{\varphi}}$
$m_{S}(\rho)_{\hat{s}}=\Sigma_{s \in m_{S}-1(\hat{s})} \rho_{s}$

Checking the Stoichiomorphism Condition

All unit rates (sufficient because of another theorem)
This is both a homomorphism and a stoichiomorphism

CRN Kinetics

A state of a CRN (S, R) is a $\boldsymbol{v} \in \mathbb{R}_{+}^{S}$
The differential system of a $\operatorname{CRN}(S, R), F \in \mathbb{R}_{+}^{S} \rightarrow \mathbb{R}^{S}$

Given by the law of mass action:

$$
F(\boldsymbol{v})(s)=\Sigma_{r=\left(\rho \rightarrow \rightarrow^{k} \pi\right) \in R} \varphi(s, r) \cdot \Pi_{\dot{S} \in S} \boldsymbol{v}_{\dot{S}}^{\rho_{s}}
$$

Usually written as a system of coupled concentration
ODEs, integrated over time: $\quad \frac{d v_{s}}{d t}=F(\boldsymbol{v})(s)$
a vector of concentrations for each species
$F(\boldsymbol{v})(s)$ gives the instantaneous change of concentration of a species in a given state
sum over all reactions of the stoichiometry of species in reaction times the product of reagent concentrations according to their stoichiometric numbers

Kinetic Emulation

A morphism $m \in(S, R) \rightarrow(\hat{S}, \hat{R})$ is a $C R N$ emulation if for the respective differential systems $F, \hat{F}, \forall \hat{v} \in \mathbb{R}_{+}^{\hat{S}}$:

$$
\begin{aligned}
& F(\widehat{\boldsymbol{v}} \circ m)=\hat{F}(\widehat{\boldsymbol{v}}) \circ m
\end{aligned}
$$

That is: $\forall s \in S . F(\widehat{\boldsymbol{v}} \circ m)(s)=\hat{F}(\widehat{\boldsymbol{v}})(m(s))$

if the derivative of s (in state $\widehat{\boldsymbol{v}} \circ m$)
equals the derivative of $m(s)$ (in state $\widehat{\boldsymbol{v}}$)
if we start the two systems in states $\boldsymbol{v}=\widehat{\boldsymbol{v}} \circ m$ (which is a copy of $\widehat{\boldsymbol{v}}$ according to m) and $\widehat{\boldsymbol{v}}$ resp., for each s the solutions are equal and the derivatives are equal, hence they will have identical trajectories by determinism

Emulation Theorem

Theorem: If $m \in(S, R) \rightarrow(\hat{S}, \hat{R})$ is a CRN reactant morphism and stoichiomorphism then it is a CRN emulation
reactant morphism $\quad \boldsymbol{m}_{s}{ }^{\mathrm{T}} \cdot \boldsymbol{\rho}=\widehat{\boldsymbol{\rho}} \cdot \boldsymbol{m}_{\boldsymbol{R}}{ }^{\mathrm{T}}$
stoichiomorphism

$$
\varphi \cdot m_{\mathcal{R}}=m_{s} \cdot \widehat{\varphi}
$$

\Downarrow
emulation

$$
F(\widehat{v} \circ m)=\widehat{F}(\widehat{v}) \circ m
$$

N.B. homomorphism implies reactant morphism, implies $\boldsymbol{m}_{\boldsymbol{S}}{ }^{\mathrm{T}} \cdot \boldsymbol{\rho}=\widehat{\boldsymbol{\rho}} \cdot \boldsymbol{m}_{\mathcal{R}}{ }^{\mathrm{T}}$.
thus, for any initial conditions of (\hat{S}, \hat{R}) we can match trajectories

Change of Rates Theorem

A change of rates for (S, R) is morphism $\iota \in(S, R) \rightarrow\left(S, R^{\prime}\right)$ such that $\iota(S)$ is the identity and $\iota(\rho, \pi, k)=\left(\rho, \pi, k^{\prime}\right)$.

Theorem: If $m \in(S, R) \rightarrow(\hat{S}, \hat{R})$ is a stoichiomorphism, then for any change of rates $\hat{\imath}$ of (\hat{S}, \hat{R}) there is a change of rates ι of (S, R) such that $\hat{\imath} \circ m \circ \iota^{-1}$ is a stoichiomorphism.
thus, for any rates of (\hat{S}, \hat{R}) we can match trajectories

In fact, ι changes rates by the ratio with which $\hat{\imath}$ changes rates:

$$
\iota(\rho, \pi, k)=\left(\rho, \pi, k \cdot \frac{\hat{k}^{\prime}}{\hat{k}}\right) \text { where } m(\rho, \pi, k)=(\hat{\rho}, \hat{\pi}, \hat{k}) \text { and } \hat{\imath}(\hat{\rho}, \hat{\pi}, \hat{k})=\left(\hat{\rho}, \hat{\pi}, \hat{k}^{\prime}\right)
$$

Network Zoos

Approximate Majority Emulation Zoo

Approximate Majority Emulation Zoo

(\quad homomorphism and
stoichiomorphism (transitive))

Emulations Compose: NCC emulates AM

- The (18) trajectories NCC can always retrace those (3) of AM

Emulation in Context

AM-AM Oscillator

AM-MI Oscillator
$m \in \mathrm{MI} \rightarrow \mathrm{AM}$ is an emulation:
it maps $z \rightarrow x$ and $\sim w \rightarrow x$

We can replace AM with MI in a context. The mapping m tells us how to wire Ml to obtain an overall emulation:

Each influence crossing the dashed lines into x is replaced by a similar influence into both z and
$\sim w$. The latter is the same as an opposite influence into w (shown).

Each influence crossing the dashed lines out of x is replaced by a similar influence from the same side of either \boldsymbol{z} or $\sim w$. The latter is the same as a similar influence from the opposite side of w (shown), and the same as an opposite influence from the same side of w.

Another
 Zoo

Network Perturbations

Networ

A complex but robust implementation of the simple network

Normal Behavior

never dead "on average

Conclusions

Interpretations of Stoichiomorphism

- Explanation of network structure
- E.g. we know that the main function of Delta-Notch is to stabilize the system in one of two states. AM is the quintessential network that embodies fast robust bistability. The stoichiomorphism from Delta-Notch to AM "explains" what Delta-Notch (normally) does, and exactly how well it can do it.
- Robust implementation of simpler function
- Redundant symmetries are implicit in the stoichiomorphism relationships
- Neutral paths in network space (evolution)
- If an evolutionary event happens to be a stoichiomorphism, or close to it, it will not be immediately selected against, because it is "kinetically neutral"
- This allows the network to increase its complexity without kinetic penalty.
- Later, the extra degrees of freedom can lead to kinetic differentiation.
- But meanwhile, the organism can explore variations of network structure.
- Network implementation (not abstraction!)
- Stoichiomorphisms are not about abstraction / coarse-graining that preserve behavior, on the contrary, they are about refinement / fine-graining that preserve behavior.
- They describe implementations of abstract networks, where the abstract networks themselves may not be (biologically) implementable because of excessive demands on species interactions.

Nature likes a good algorithm

Second part

any rates and initial conditions
These additional feedbacks do exist in real cell cycles (via indirections)

The cell cycle switch can exactly emulate AM

In separate work...

- We produced a chemical implementation of AM using DNA gates
- I.e., a 'synthetic reimplementation' of the central cell-cycle switch.

nature nanotechnology

nature.com $\stackrel{\text { - journal }}{ }$ home > archive $>$ issue > article - abstrac
ARTICLE PREVIEW
view full access options .
NATURE NANOTECHNOLOGY | ARTICLE
Programmable chemical controllers made from DNA

Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David Soloveichik \& Georg Seelig

