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Stochastic Collectives
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Stochastic Collectives

● “Collective”:
– A large set of interacting finite state automata:

●Not quite language automata (“large set”)

●Not quite cellular automata (“interacting” but not on a grid)

●Not quite process algebra (“finite state” and “collective”)

●Not quite calculus (rate of change of “automata”??)

●Cf. “multi-agent systems” and “swarm intelligence”

● “Stochastic”:
– Interactions have rates

● Very much like biochemistry 
– Which is a large set of stochastically interacting molecules/proteins

– Are proteins finite state and subject to automata-like transitions?
●Let’s say they are, at least because:

●Much of the knowledge being accumated in Systems Biology 
is described as state transition diagrams [Kitano].
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State Transitions
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Even More State Transitions

http://www.expasy.ch/cgi-bin/show_thumbnails.pl
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Reverse Engineering Nature

● That’s what Systems Biology is up against
– Exemplified by a technological analogy:

● Tamagotchi: a technological organism
– Has inputs (buttons) and outputs (screen/sound)

– It has state: happy or needy (or hungry, sick, dead…)

– Has to be petted at a certain rate (or gets needy)

– Each one has a slightly different behavior

● Reverse Engineering Tamagotchi 
– Running experiments that elucidate their behavior

– Building models that explain the experiments

● Applications
– Engineering: Can we build our own Tamagotchi? (Sadly, no longer made.)

– Maintenance: Can we fix a broken Tamagotchi?

How often do I have to 

exercise my Tamagotchi?

Every Tamagotchi is 

different. However we do 

recommend exercising at 

least three times a day 
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Understanding T.Nipponensis

● Tamagotchi Nipponensis: a stochastic interactive automata
– 40 million sold worldwide; discontinued in 1998
– Still found “in the wild” in Akihabara

● Traditional scientific investigations fail
– Design-driven understanding fails

● We cannot read the manual (Japanese)
● What does a Tamagotchi “compute”? What is its “purpose”?
● Why does it have 3 buttons?

– Mechanistic understanding fails
● Few moving parts. Removing components mostly ineffective or “lethal”
● The “tamagotchi folding problem” (sequence of manufacturing steps) 

is too hard and gives little insight on function

– Behavioral understanding fails
● Subjecting to extreme conditions reveals little and may void warranty
● Does not answer consistently to individual stimuli, nor to sequences of stimuli
● There are stochastic variations between individuals

– Ecological understanding fails
● Difficult to observe in its native environment (kids’ hands)
● Mass produced in little-understood automated factories
● It evolved by competing with other products in the baffling Japanese market

– Mathematical understanding fails
● What differential equations does it obey? (Uh?)

Tamagotchi X-ray

Tamagotchi Surgery
http://necrobones.com/tamasurg/
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A New Approach

● “Systems Technology” of T. Nipponensis
– High-throughput experiments (get all the information you possibly can)

●Decode the entire software and hardware

●Take sequences of tamagotchi screen dumps under different conditions

● Put 300 in a basket and shake them; make statistics of final state

– Modeling (organize all the information you got)
●Ignore the “folding” (manufacturing) problem

●Ignore materials (it’s just something with buttons, display, and a program.)
●Abstract until you find a conceptual model (ah-ha: it’s a stochastic automata).

● Do we understand what stochastic automata collectives can do?

Communicating Tamagotchi
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Automata Collectives
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Interacting Automata

Communicating automata: a graphical FSA-like 
notation for “finite state restriction-free π-
calculus processes”. Interacting automata do not 
even exchange values on communication.

The stochastic version has rates on 
communications, and delays.

@λ1
@λ2

@λ3

@λ4

@λ5

@r1

@r2

@r3

?a !a

?b

!b!c

?c

A1

A2

A3

B1

B2B3

C1 C2

C3

new a@r1 
new b@r2 
new c@r3

A1 = ?a; A2

A2 = !c; A3

A3 = @λ5; A1

B1 = @λ2; B2 + !a; B3

B2 = @λ1; B1

B3 = ?b; B2

C1 = !b; C2 + ?c; C3

C2 = @λ3; C1

C3 = @λ4; C2

A1 | B1 | C1

Communication 
channels

A
utom

ata

The system and 
initial state

“Finite state” means: no composition or restriction inside recursion.

Analyzable by standard Markovian techniques, by first computing 
the “product automata” to obtain the underlying finite Markov 
transition system. [Buchholz]

Current State

Interaction
Transition
Delay
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Interacting Automata Transition Rules

?a !a ?a !a

Interaction

Delay

a@r

@r @r
r

r

Current State

Transition
Delay
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Groupies and Celebrities

Groupie
(wants to be like somebody different)

Celebrity
(does not want to be like somebody else)
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always 
eventually 
deadlock

directive sample 5.0 1000

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; B()

and B() = do !b; B() or ?a; A()

run 100 of (A() | B())

directive sample 0.1 1000

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?a; B()

and B() = do !b; B() or ?b; A()

run 100 of (A() | B())

Unstable because within an A majority, an A has difficulty finding a B to 
emulate, but the few B’s have plenty of A’s to emulate, so the majority may 
switch to B. Leads to deadlock when everybody is in the same state and there is 
nobody different to emulate.

Stable because as soon as a A finds itself in the majority, it is more likely to 
find somebody in the same state, and hence change, so the majority is weakened.

A

B

!a

?b

!b

?a

A

B

!a

?a ?b

!b

A stochastic collective of celebrities: A stochastic collective of groupies:
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Ca

Cb

Ga

Gb
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Both Together

A way to break the deadlocks: Groupies with just a few Celebrities 

directive sample 10.0 1000

directive plot Ga(); Gb(); Ca(); Cb()

new a@1.0:chan()

new b@1.0:chan()

let Ca() = do !a; Ca() or ?a; Cb()

and Cb() = do !b; Cb() or ?b; Ca()

let Ga() = do !a; Ga() or ?b; Gb()

and Gb() = do !b; Gb() or ?a; Ga()

run     1 of (Ca() | Cb())

run 100 of (Ga() | Gb())

A few
Celebrities

Many
Groupies

never 
deadlock

!a

?b

!b

?a
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?a ?b

!b

A tiny bit of 
“noise” can make a 
huge difference
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Ga
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Doped Groupies

directive sample 10.0 1000

directive plot Ga(); Gb(); Da(); Db()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; Gb()

and Gb() = do !b; Gb() or ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run   1 of (Da() | Db())

run 100 of (Ga() | Gb())

Groupie

never 
deadlock

!a !b

A similar way to break the deadlocks: destabilize the groupies by a small perturbation.

Doping(1)

(1)A technical term in microelectronics
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Hysteric Groupies

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run   1 of (Da() | Db())

We can get more regular behavior from groupies if they “need more convincing”, 
or “hysteresis” (history-dependence), to switch states. 

(Still with doping)
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directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run   1 of (Da() | Db())
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Da Db Dc

Hysteric 3-Way Groupies
directive sample 3.0 1000

directive plot A(); B(); C()

new a@1.0:chan()

new b@1.0:chan()

new c@1.0:chan()

let A() = do !a; A() or ?c; ?c; C()

and B() = do !b; B() or ?a; ?a; A()

and C() = do !c; C() or ?b; ?b; B()

let Da() = !a; Da()

and Db() = !b; Db()

and Dc() = !c; Dc()

run 100 of (A() | B() | C())

run 1 of (Da() | Db() | Dc())
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!c

?c
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!a !b

!c

?a

?b
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?b
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The Strength of Populations

?a @λ!a

@µ

N

B
N

A

directive sample 0.01 1000

directive plot B()

val lam = 1000.0     

val mu = 1.0

new a@mu:chan

let A() = !a; A()

and B() = ?a; C()     

and C() = delay@lam; B() 

run 1000 of (A() | B())

At size 2N, on a shared channel, 
µ is N times stronger than λ: 

interaction easily wins over delay.
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Equilibrium
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λ=1000
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N=10000
λ=10000
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fight!fight!
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directive sample 110.0 1000

directive plot !a; !b

new a@1.0:chan new b@1.0:chan

let Inv2_hi(a:chan, b:chan) = 

do !b; Inv2_hi(a,b) or ?a; Inv2_mi(a,b)

and Inv2_mi(a:chan, b:chan) = 

do ?b; Inv2_hi(a,b) or delay@1.0; Inv2_hi(a,b)

or ?a; Inv2_lo(a,b)

and Inv2_lo(a:chan, b:chan) = 

do ?b; Inv2_mi(a,b) or delay@1.0; Inv2_mi(a,b)

run 100 of Inv2_hi(a,b)

let clock(t:float, tick:chan) =        (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti     (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S1(a:chan, tock:chan) =  do !a; S1(a,tock) or ?tock; ()

let SN(n:int, t:float, a:chan, tick:chan, tock:chan) = 

if n=0 then clock(t, tock) else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock))

let raisingfalling(a:chan, n:int, t:float) = 

(new tick:chan new tock:chan 

run (clock(t,tick) | SN(n,t,a,tick,tock)))

run raisingfalling(a,100,0.5)

Boolean Inverter Collectives

directive sample 110.0 1000

directive plot !a; !b

new a@1.0:chan new b@1.0:chan

let Inv_hi(a:chan, b:chan) = 

do !b; Inv_hi(a,b) 

or ?a; Inv_lo(a,b)

and Inv_lo(a:chan, b:chan) = 

delay@1.0; Inv_hi(a,b)

run 100 of Inv_hi(a,b)

let clock(t:float, tick:chan) =        (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti     (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S1(a:chan, tock:chan) =  do !a; S1(a,tock) or ?tock; ()

let SN(n:int, t:float, a:chan, tick:chan, tock:chan) = 

if n=0 then clock(t, tock) else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock))

let raisingfalling(a:chan, n:int, t:float) = 

(new tick:chan new tock:chan 

run (clock(t,tick) | SN(n,t,a,tick,tock)))

run raisingfalling(a,100,0.5)

directive sample 110.0 1000

directive plot !a; !b

new a@1.0:chan new b@1.0:chan

let Inv_hi(a:chan, b:chan) = 

do !b; Inv_hi(a,b) 

or ?a; Inv_lo(a,b)

and Inv_lo(a:chan, b:chan) = 

do ?b; Inv_hi(a,b)

or delay@1.0; Inv_hi(a,b)

run 100 of Inv_hi(a,b)

let clock(t:float, tick:chan) =        (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti     (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S1(a:chan, tock:chan) =  do !a; S1(a,tock) or ?tock; ()

let SN(n:int, t:float, a:chan, tick:chan, tock:chan) = 

if n=0 then clock(t, tock) else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock))

let raisingfalling(a:chan, n:int, t:float) = 

(new tick:chan new tock:chan 

run (clock(t,tick) | SN(n,t,a,tick,tock)))

run raisingfalling(a,100,0.5)

!b

?a

!b

?a ?b

!b

?a ?b

?a ?b

directive sample 110.0 1000

directive plot !a; !b; !c; !d

new a@1.0:chan new b@1.0:chan new c@1.0:chan 

let Inv2_hi(a:chan, b:chan) = 

do !b; Inv2_hi(a,b) or ?a; Inv2_mi(a,b)

and Inv2_mi(a:chan, b:chan) = 

do ?b; Inv2_hi(a,b) or delay@1.0; Inv2_hi(a,b)

or ?a; Inv2_lo(a,b)

and Inv2_lo(a:chan, b:chan) = 

do ?b; Inv2_mi(a,b) or delay@1.0; Inv2_mi(a,b)

run 100 of (Inv2_hi(a,b) | Inv2_lo(b,c))

let clock(t:float, tick:chan) =        (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti     (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S1(a:chan, tock:chan) =  do !a; S1(a,tock) or ?tock; ()

let SN(n:int, t:float, a:chan, tick:chan, tock:chan) = 

if n=0 then clock(t, tock) else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock))

let raisingfalling(a:chan, n:int, t:float) = 

(new tick:chan new tock:chan 

run (clock(t,tick) | SN(n,t,a,tick,tock)))

run raisingfalling(a,100,0.5)

!b

?a ?b

?a ?b

!c

?b ?c

?b ?c

perfect
rectifier

hysteresis

in presence of a, b goes low
in absence of a, b goes high

the high b state reinforces 
itself (as a population)

input 
stimulus

zero-point noise 
resistant 

b = not a b = not a b = not a b = not a
c = not b

!b
!a

time

# !a

#
#
 !b

!c

“signal”

“no signal”
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Boolean Gate Collectives
c = a or b c = a imply b

!c !c

?a ?b

!c

?a ?b

c = a xor b

!c

?a

?b

!c

?b

?a

?b ?a

Inputs:
10 !a for 4t
2t; 10 !b for 4t

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

val del = 1.0

let Or_hi(a:chan, b:chan, c:chan) = 

do !c; Or_hi(a,b,c) or delay@del; Or_lo(a,b,c)

and Or_lo(a:chan, b:chan, c:chan) = 

do ?a; Or_hi(a,b,c) or ?b; Or_hi(a,b,c)

run 100 of Or_lo(a,b,c)

let clock(t:float, tick:chan) =      (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) = 

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; ()

run 10 of (new tick:chan run (clock(4.0,tick) | S_a(tick)))

run 10 of (new tick:chan run (clock(2.0,tick) | S_b(tick)))

!c

?a ?b

c = a unless b

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

val del = 1.0

let And_hi(a:chan, b:chan, c:chan) = 

do !c; And_hi(a,b,c) or delay@del; And_lo_a(a,b,c)

and And_lo_a(a:chan, b:chan, c:chan) = 

do ?a; And_hi(a,b,c) or delay@del; And_lo_b(a,b,c)

and And_lo_b(a:chan, b:chan, c:chan) = 

?b; And_lo_a(a,b,c)

run 100 of And_lo_b(a,b,c)

let clock(t:float, tick:chan) =      (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) = 

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; S_b3(tick)

and S_b3(tick:chan) = do !b; S_b3(tick) or ?tick; ()

run 10 of (new tick:chan run (clock(4.0,tick) | S_a(tick)))

run 10 of (new tick:chan run (clock(2.0,tick) | S_b(tick)))

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

val del = 1.0

let Imply_hi_a(a:chan, b:chan, c:chan) = 

do !c; Imply_hi_a(a,b,c) or ?a; Imply_lo(a,b,c)

and Imply_hi_b(a:chan, b:chan, c:chan) = 

do !c; Imply_hi_b(a,b,c) or delay@del; Imply_lo(a,b,c)

and Imply_lo(a:chan, b:chan, c:chan) = 

do ?b; Imply_hi_b(a,b,c) or delay@del; Imply_hi_a(a,b,c)

run 100 of Imply_lo(a,b,c)

let clock(t:float, tick:chan) =      (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) = 

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; ()

run 10 of (new tick:chan run (clock(4.0,tick) | S_a(tick)))

run 10 of (new tick:chan run (clock(2.0,tick) | S_b(tick)))

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

val del = 1.0

let OOlO_hi(a:chan, b:chan, c:chan) = 

do !c; OOlO_hi(a,b,c) or delay@del; OOlO_lo_a(a,b,c) or ?b; 
OOlO_lo_b(a,b,c)

and OOlO_lo_a(a:chan, b:chan, c:chan) = 

?a; OOlO_hi(a,b,c)

and OOlO_lo_b(a:chan, b:chan, c:chan) = 

delay@del; OOlO_hi(a,b,c)

run 50 of (OOlO_lo_a(a,b,c) | OOlO_lo_b(a,b,c))

let clock(t:float, tick:chan) =      (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) = 

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; ()

run 10 of (new tick:chan run (clock(4.0,tick) | S_a(tick)))

run 10 of (new tick:chan run (clock(2.0,tick) | S_b(tick)))

c = a and b

!c

?b

?a

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Xor_hi_a(a:chan, b:chan, c:chan) = 

do !c; Xor_hi_a(a,b,c) or ?b; Xor_lo_ab(a,b,c) or delay@1.0; Xor_lo_a(a,b,c) 

and Xor_hi_b(a:chan, b:chan, c:chan) = 

do !c; Xor_hi_b(a,b,c) or ?a; Xor_lo_ab(a,b,c) or delay@1.0; Xor_lo_b(a,b,c) 

and Xor_lo_a(a:chan, b:chan, c:chan) = 

do ?a; Xor_hi_a(a,b,c) or ?b; Xor_lo_ab(a,b,c)

and Xor_lo_b(a:chan, b:chan, c:chan) = 

do ?b; Xor_hi_b(a,b,c) or ?a; Xor_lo_ab(a,b,c)

and Xor_lo_ab(a:chan, b:chan, c:chan) = 

do delay@1.0; Xor_hi_a(a,b,c) or delay@1.0; Xor_hi_b(a,b,c)

run 50 of (Xor_lo_a(a,b,c) | Xor_lo_b(a,b,c))

let clock(t:float, tick:chan) =      (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) = 

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; ()

run 10 of (new tick:chan run (clock(4.0,tick) | S_a(tick)))

run 10 of (new tick:chan run (clock(2.0,tick) | S_b(tick)))

!c

?a

?b

!c

?b

?a

?b ?a

!c

?a

?b

!c

?b

?a

?b ?a

!c

?a

?b

!c

?b

?a

?b ?a

!c

?a

?b

!c

?b

?a

?b ?a

!c !c

?a ?b

!c !c

?a ?b

!c !c

?a ?b

!c !c

?a ?b

!b!a

!c
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Bidirectional

Polymerization
new c@µ new stop@1.0

Afree = 

(new rht@λ; !c(rht); Abrht(rht))

+ ?c(lft); Ablft(lft)

Ablft(lft) = 

(new rht@λ; !c(rht); Abound(lft,rht))

Abrht(rht) = 

?c(lft); Abound(lft,rht)

Abound(lft,rht) = ?stop

A A A A

?c(r) !c(νl)

Ar

Af

Al

Ab

?c(l)

?c(l)

!c(νr)

!c(νr)

Free

Bound
right

Bound
left

Bound
both

Monomer 
Automata

Afree

Ablft

Abrht

Abound

!c(νr)?c(l)

?c(l)

?c(l)

?c(l)

!c(νr)

!c(νr)!c(νr)

Free

Bound
right

Bound
left

Bound
both

Free

Bound
right

Bound
left

Bound
both

directive sample 10000.0

directive plot Afree(); Ablft(); Abrht(); Abound()

val lam = 1.0   val mu = 1.0

new c@mu:chan(chan)  new stop@1.0:chan

let Afree() = 

(new rht@lam:chan run

do !c(rht); Abrht(rht)

or ?c(lft); Ablft(lft))

and Ablft(lft:chan) = 

(new rht@lam:chan run

!c(rht); Abound(lft,rht))

and Abrht(rht:chan) = 

?c(lft); Abound(lft,rht)

and Abound(lft:chan, rht:chan) =

?stop

run (2 of Afree())

Communicating Automata
Bound output !c(νr) and input ?c(l)
on automata transitions
to model complexation
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Bidirectional Polymerization

Circular Polymer Lengths
directive sample 1000.0

directive plot Abound(); ?count

type Link = chan(chan)

type Barb = chan

val lam = 1000.0 (* set high for better counting *)

val mu = 1.0

new c@mu:chan(Link)

new enter@lam:chan(Barb)

new count@lam:Barb

let Afree() = 

(new rht@lam:Link run

do !c(rht); Abrht(rht)

or ?c(lft); Ablft(lft))

and Ablft(lft:Link) = 

(new rht@lam:Link run

!c(rht); Abound(lft,rht))

and Abrht(rht:Link) = 

?c(lft); Abound(lft,rht)

and Abound(lft:Link, rht:Link) =

do ?enter(barb); (?barb | !rht(barb))

or ?lft(barb); (?barb | !rht(barb))

(* each Abound waits for a barb, exhibits it, and passes it to 

the right so we can plot number of Abound in a ring *)

let clock(t:float, tick:chan) =       (* sends a tick every t time *)

(val ti = t/1000.0 val d = 1.0/ti

let step(n:int) = 

if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(1000))

new tick:chan

let Scan() = ?tick; !enter(count); Scan()

run 100 of Afree() 

run (clock(100.0, tick) | Scan())

Scanning and counting the size of the circular polymers (by a cheap trick).

Polymer formation is complete within 10t; then a different polymer is scanned every 100t. 

100xAfree, initially.

The height of each rising 
step is the size of a 
separate circular polymer. 
(Unbiased sample of nine 
consecutive runs.)
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Actin-like

Poly/Depolymerization
Ap pA

A p A p

new c@µ

Afree = 

(new lft@λ; !c(lft); Ablft(lft)) +

?c(rht); Abrht(rht)

Ablft(lft) = 

!lft; Afree +

?c(rht); Abound(lft,rht)

Abrht(rht) = 

?rht; Afree

Abound(lft,rht) =

!lft; Abrht(rht)

!c(νl)?c(r)

?r !l

Af

Al

Ab

!l

?c(r)

?r

?c(r)
!l

Free

Bound
right

Bound
left

Bound
both

Ar

!c(νl)

Monomer 
Automata

r←νl!l

?c(r)

?r

?c(r)
!l

Free

Bound
left

Bound
both

!c(νl)

!l

?c(r)

?r

?c(r)
!l

Free

Bound
right

Bound
both

!c(νl)

Bound
right

Bound
left
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The Law of 
Mass Interaction
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Law of Mass Interaction

[D]’ =  -λ [D]    

The speed of interaction† is proportional 
to the number of possible interactions.

@λ
D
1000

E

[E]’ = λ [D] 

† speed of interaction (formally definable) 

= number of interactions over time

not proportional to the number of interacting processes!

[P] is the number of processes P (this is informal; it is only 
meaningful for a set of processes offering a given action, but 
a set of such processes can be counted and plotted)

Decay

Exponential
Decay law
Rate of change 

proportional to number 
of possible decays.

[A]’ =  -λ [A] [B]

[B]’ = -λ [A] [B]

[AB]’ = λ [A] [B]

?c
A

B

1000

1000

!c

AB
@λ

Mass interaction

Mass 
Interaction law

Rate of change 
proportional to number 
of possible interactions

Interaction 
Law generalizes  
Decay Law

0

200
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800

1000

0 0.002 0.004 0.006 0.008 0.01

D() A1() A2()

A4() A8()

λ=1

Chemical Law of Mass Action
http://en.wikipedia.org/wiki/Chemical_kinetics

The speed of a chemical reaction is 
proportional to the activity of the 
reacting substances. 

(Activity = concentration, for well-
stirred aqueous medium) 

(Concentration = number of moles per 
liter of solution)

(Mole = 6.022141×1023 particles)

decay

interaction

directive sample 0.01 1000

directive plot D(); A1(); A2(); A4(); A8()

new c1@1.0: chan()   new c2@2.0: chan()

new c4@4.0: chan()   new c8@8.0: chan()

let D() = delay@1.0

let A1() = ?c1 and B1() = !c1

let A2() = ?c2 and B2() = !c2

let A4() = ?c4 and B4() = !c4

let A8() = ?c8 and B8() = !c8

run 1000 of (D() | A1() | B1() | A2() 

| B2() | A4() | B4() | A8() | B8())

[A]0=1000

λ=1,2,4,8
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Activity and Speed
stochastic algebras disagree!

?c
A

B
!c

@λ
A

B

@λ

?c

?c

!c

A

B

@λ

?c

?c

!c

!c

The speed of interaction is proportional 
to the number of possible interactions.

c activity: 1

speed: λ
c activity: 2

speed: 2λ
c activity: 4

speed: 4λ

directive sample 0.01 10000

directive plot A1(); A2(); A3()

new c1@1.0:chan 

new c2@1.0:chan

new c3@1.0:chan

let A1() = ?c1

and B1() = !c1

let A2() = do ?c2 or ?c2

and B2() = !c2

let A3() = do ?c3 or ?c3

and B3() = do !c3 or !c3

run 1000 of (A1() | B1() 

| A2() | B2() | A3() | B3())

Other algebras assign rates to actions, 
not channels, with speed laws: 
2λ*2λ = 4λ2

max(2λ,2λ) = 2λ [Goetz]
min(2λ,2λ) = 2λ [Priami]
1/(1/(2λ)+1/(2λ)) = λ [PEPA]
2λ*1 = 2λ (passive inputs)

The mass interaction law [Buchholz] 
[Priami-Regev-Shapiro-Silverman] is 
compatible with chemistry 
[Gillespie] and incompatible with 
any other stochastic algebra in the 
literature! (including [Priami]; see 
[Hermanns])

0

200

400

600

800

1000

0 0.002 0.004 0.006 0.008 0.01

A1() A2() A3()

?c | !c 

?c+?c | !c 

?c+?c | !c+!c 

The activity (= “concentration”) on a channel is the 
number of possible interactions on that channel. 

The speed of interaction on a channel, is the 
activity multiplied by the base rate of the channel.

=
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Forbidden (Mix) 
interactions

Assume each process P is in restricted-
sum-normal-form. For each channel x:

In(x,P) = Num of active ?x in P

Out(x,P) = Num of active !x in P

Mix(x,P) = In(x,P)*Out(x,P)

In(x) = Sum P of In(x,P)

Out(x) = Sum P of Out(x,P)

Mix(x) = Sum P of Mix(x,P)

The global Activity on channel x:

The global speed of interaction on a 
channel x:

Act(x) = (In(x)*Out(x))-Mix(x)

Possible Interactions

!3a

?2a
In(a,A) = 2

Out(a,A) = 3

Mix(a,A) = 

2*3 = 6

?2a

!1a

BA B
In(a,B) = 2

Out(a,B) = 1

Mix(a,B) = 

2*1 = 2

Act(a) = (In(a) * Out(a)) – Mix(a) = 4*4 – 8 = 8

speed(a) = Act(a)*rate(a) = 8*rate(a)

In(a) = 2+2 = 4

Out(a) = 3+1 = 4

Mix(a,P) = 6+2 = 8

6

2

speed(x) = Act(x)*rate(x)

6 2

#interactions that cannot happen 
in a given summation P

total #interactions that cannot happen 

total cross product of inputs and outputs

minus total #interactions that cannot happen 

The speed of interaction is proportional to 
the number of possible interactions.

But a process cannot interact with itself.
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[A]’ =  -speed(c) = -λ Act(c)

Act(c) = (In(c)*Out(c))-Mix(c)

= ([A]*[A]) – [A] =  [A]*([A]-1)

hence [A]’ = -λ [A] ([A]-1)

Deriving Back Interaction Laws

?c
A

B
!c

@λ

[A]’ =  -speed(c) = -λ Act(c)

Act(c) = (In(c)*Out(c))-Mix(c)

= ([A]*[B]) – 0

hence [A]’ = -λ [A][B]

!c@λ

?c

A

@λ

The mixed interaction law:

A
@λ

[A]’ = Σ(ci) -speed(ci) 

= Σ(ci) -λ Act(ci)

Act(ci) = (In(ci)*Out(ci))-Mix(ci)

= (1*1) – 0 = 1

hence [A]’ = -λ [A]

?ciAi

!ci

@λ

The mass action law: The decay law:

(Each Ai has its own 
private channel ci)

=def

Act(x) = (In(x)*Out(x))-Mix(x)
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Conclusions
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Conclusions

● Stochastic Collectives
– Complex global behavior from simple components

– Emergence of collective functionality from “non-functional” components

– (C.f. “swarm intelligence”: simple global behavior from complex components)

● Artificial Biochemistry
– Stochastic collectives with Law of Mass Interaction kinetics

– Connections to classical Markov theory, 
chemical Master Equation, and Rate Equation

● The agent/automata/process point of view
– “Individuals” that transition between states
(vs. transmutation between “unrelated” chemical species)

– More appropriate for Systems Biology

– Stochastic π-calculus (SPiM) for investigating stochastic collectives
●Restriction+Communication ⇒ Polymerization: FSA that “stick together”


