Artificial Biochemistry
 Combining Stochastic Collectives

Luca Cardelli

Microsoft Research MSR-UniTN CC\&SB

Trento 2006-04-03
www. Iuca.demon.co.uk

Stochastic Collectives

Stochastic Collectives

- "Collective":
- A large set of interacting finite state automata:
- Not quite language automata ("large set")
- Not quite cellular automata ("interacting" but not on a grid)
- Not quite process algebra ("finite state" and "collective")
- Not quite calculus (rate of change of "automata"??)
- Cf. "multi-agent systems" and "swarm intelligence"
- "Stochastic":
- Interactions have rates
- Very much like biochemistry
- Which is a large set of stochastically interacting molecules/proteins
- Are proteins finite state and subject to automata-like transitions?
- Let's say they are, at least because:
- Much of the knowledge being accumated in Systems Biology is described as state transition diagrams [Kitano].

State Transitions

Even More State Transitions

Reverse Engineering Nature

- That's what Systems Biology is up agains \dagger
- Exemplified by a technological analogy:
- Tamagotchi: a technological organism
- Has inputs (buttons) and outputs (screen/sound)
- It has state: happy or needy (or hungry, sick, dead...)
- Has to be petted at a certain rate (or gets needy)
- Each one has a slightly different behavior
- Reverse Engineering Tamagotchi
- Running experiments that elucidate their behavior
- Building models that explain the experiments
- Applications
- Engineering: Can we build our own Tamagotchi? (Sadly, no longer made.)
- Maintenance: Can we fix a broken Tamagotchi?

Understanding T.Nipponensis

- Tamagotchi Nipponensis: a stochastic interactive automata
- 40 million sold worldwide; discontinued in 1998
- Still found "in the wild" in Akihabara
- Traditional scientific investigations fail

- Design-driven understanding fails
- We cannot read the manual (Japanese)
- What does a Tamagotchi "compute"? What is its "purpose"?
- Why does it have 3 buttons?
- Mechanistic understanding fails
- Few moving parts. Removing components mostly ineffective or "lethal"
- The "tamagotchi folding problem" (sequence of manufacturing steps) is too hard and gives little insight on function
- Behavioral understanding fails
- Subjecting to extreme conditions reveals little and may void warranty
- Does not answer consistently to individual stimuli, nor to sequences of stimuli
- There are stochastic variations between individuals
- Ecological understanding fails
- Difficult to observe in its native environment (kids' hands)
- Mass produced in little-understood automated factories
- It evolved by competing with other products in the baffling Japanese market
- Mathematical understanding fails
- What differential equations does it obey? (Uh?)

A New Approach

- "Systems Technology" of T. Nipponensis
- High-throughput experiments (get all the information you possibly can)
- Decode the entire software and hardware
- Take sequences of tamagotchi screen dumps under different conditions
- Put 300 in a basket and shake them; make statistics of final state
- Modeling (organize all the information you got)
- Ignore the "folding" (manufacturing) problem
- Ignore materials (it's just something with buttons, display, and a program.)
- Abstract until you find a conceptual model (ah-ha: it's a stochastic automata).
- Do we understand what stochastic automata collectives can do?

Automata Collectives

Interacting Automata

Communicating automata: a graphical FSA-like notation for "finite state restriction-free π calculus processes". Interacting automata do no \dagger even exchange values on communication.
The stochastic version has rates on communications, and delays.

"Finite state" means: no composition or restriction inside recursion. Analyzable by standard Markovian techniques, by first computing the "product automata" to obtain the underlying finite Markov transition system. [Buchholz]

Interacting Automata Transition Rules

Groupies and Celebrities

A stochastic collective of celebrities:

Stable because as soon as a A finds itself in the majority, it is more likely to find somebody in the same state, and hence change, so the majority is weakened.

Groupie

(wants to be like somebody different)

$$
\begin{aligned}
& \text { directive sample } 5.01000 \\
& \text { directive plot } A() ; B() \\
& \text { new } a @ 1.0 \text { :chan(}) \\
& \text { new } b @ 1.0 \text { :chan(} \\
& \text { let } A()=\text { do !a; } A() \text { or ?b; } B() \\
& \text { and } B()=\text { do !b; } B() \text { or ?a; } A() \\
& \text { run } 100 \text { of }(A() \mid B())
\end{aligned}
$$

A stochastic collective of groupies:

Unstable because within an A majority, an A has difficulty finding a B to emulate, but the few B's have plenty of A's to emulate, so the majority may switch to B. Leads to deadlock when everybody is in the same state and there is nobody different to emulate.

Both Together

A tiny bit of "noise" can make a huge difference

! b

A way to break the deadlocks: Groupies with just a few Celebrities


```
directive sample 10.0 1000
directive plot Ga();Gb();Ca();Cb()
new a@1.0:chan()
new b@1.0:chan()
let Ca() = do !a;Ca() or ?a; Cb()
and }\textrm{Cb}()=do!b;Cb() or ?b;Ca(
let Ga() = do !a;Ga() or ?b;Gb()
and Gb()=do!b;Gb() or ?a;Ga()
run 1 of (Ca()|Cb())
run 100 of (Ga()|Gb())
```


Doped Groupies

A similar way to break the deadlocks: destabilize the groupies by a small perturbation.
?a ?b

Doping ${ }^{(1)}$
directive sample 10.01000
directive plot $G a() ; G b() ; D a() ; D b()$

```
new a@1.0:chan()
new b@1.0:chan()
```

let $G a()=$ do !a; $G a()$ or ? $b ; G b()$
and $G b()=d o!b ; G b()$ or ? $a ; G a()$

$$
\text { let } D a()=\text { la; } D a()
$$

$$
\text { and } D b()=!b ; D b()
$$

$$
\text { run } 1 \text { of }(D a() \mid D b())
$$

$$
\text { run } 100 \text { of }(G a() \mid G b())
$$

Hysteric Groupies

We can get more regular behavior from groupies if they "need more convincing", or "hysteresis" (history-dependence), to switch states.

! b

(Still with doping)

directive sample 10.01000 directive plot $G a() ; G b()$
new a@1.0:chan() new b@1.0:chan()
let $G a()=$ do !a; $G a()$ or ?b; ?b; $G b()$ and $G b()=d o!b ; G b()$ or ?a; ?a; $G a()$
let $D a()=!a ; D a()$ and Db()$=!\mathrm{b} ; \mathrm{Db}()$
run 100 of $(\mathrm{Ga}() \mid G b())$
run 1 of $(\mathrm{Da}() \mid \mathrm{Db}())$
directive sample 10.01000
directive plot $G a() ; G b()$
new a@1.0:chan() new b@1.0:chan()
let $G a()=$ do !a; $G a()$ or ? $b ;$?b; ?b; $G b()$ and $G b()=d o!b ; G b()$ or ?a; ?a; ?a; $G a()$
let $D a()=!a ; D a()$
and Db()$=!\mathrm{b} ; \mathrm{Db}()$
run 100 of $(G a() \mid G b())$
run 1 of $(\mathrm{Da}() \mid \mathrm{Db}())$

Hysteric 3-Way Groupies

directive sample 3.01000
directive plot $A() ; B() ; C()$
new a@1.0:chan()
new b@1.0:chan()
new c@1.0:chan()
let $A()=$ do !a; $A()$ or ? $c ; ? c ; C()$
and $B()=d o!b ; B()$ or ? $a ; ? a ; A()$ and $C()=$ do !c; $C()$ or ?b; ?b; $B()$
let $D a()=!a ; D a()$ and Db()$=!\mathrm{b} ; \mathrm{Db}()$ and $D C()=!c ; D C()$
run 100 of $(A()|B()| C())$
run 1 of $(D a()|D b()| D c())$

The Strength of Populations

At size $2 N$, on a shared channel, μ is N times stronger than \wedge : interaction easily wins over delay.
directive sample 0.011000
directive plot $B()$
$\mathrm{val} \mathrm{lam}=1000.0$
$\mathrm{val} \mathrm{mu}=1.0$
new a@mu:chan
let $A()=!a ; A()$
and $B()=? a ; C()$
and $C()=$ delay@lam; $B()$
run 1000 of $(A() \mid B())$

Boolean Inverter Collectives

$b=n o t a$ b b
in presence of a, b goes low in absence of a, b goes high

$b=\operatorname{not} a$

the high b state reinforces itself (as a population)

$b=\operatorname{not} a$

[^0]new ele. 1. chan new bet. C .char

do
run 100 of Tm2 Lhi(a.b)

and

Boolean Gate Collectives

$$
\sum A>A>\sum A>A
$$

Bidirectional
Polymerization
new c@ μ new stop@1.0

$$
\begin{aligned}
& A_{\text {free }}= \\
& \quad\left(\text { new rht@ } 1 \text {; !c(rht); } A_{\text {brht }}(r h t)\right) \\
& \quad+? c(I f t) ; A_{\text {blft }}(I f t) \\
& A_{\text {bff }}(I f t)= \\
& \left(\text { new rht@ } 1 ;!c(r h t) ; A_{\text {bound }}(I f t, r h t)\right) \\
& A_{\text {brht }}(r h t)= \\
& \text { ?c(lft); } A_{\text {bound }}(I f t, r h t) \\
& A_{\text {bound }}(I f t, r h t)=? \text { stop }
\end{aligned}
$$

Communicating Automata
Bound output !c ${ }^{(}{ }^{v} r$ r) and input ?ce) on automata transitions to model complexation

Monomer Automata

Bound both

Bidirectional Polymerization

Circular Polymer Lengths

Scanning and counting the size of the circular polymers (by a cheap trick).
Polymer formation is complete within 10t; then a different polymer is scanned every $100 t$.

directive sample 1000.0 directive plot Abound(); ?count

type Link = chan(chan)

type Barb = chan
val lam $=1000.0$ (* set high for better counting *)
val $m u=1.0$
new c@mu:chan(Link)
new enter@lam:chan(Barb)
new count@lam:Barb
let Afree () $=$
(new rht@lam:Link run
do !c(rht); Abrht(rht)
or ?c(lft); Ablft(lft))
and $\mathrm{Ablft}(\mid f t:$ Link $)=$
(new rht@lam:Link run
! $\mathrm{c}(\mathrm{rht})$) Abound($(\mathrm{f} \dagger$, rht $)$)
and Abrht(rht:Link) =
?c(lft); Abound(lft,rht)
and Abound(lft:Link, rht:Link) =
do ?enter(barb): (?barb |!rht(barb))
or ?|ft(barb): (?barb | ! rht(barb))
(* each Abound waits for a barb, exhibits it, and passes it to the right so we can plot number of Abound in a ring *)
let clock(t:float, tick:chan) = (* sends a tick every \dagger time *) (val $+i=t / 1000.0$ val $d=1.0 /+i$
let $\operatorname{step}(n: i n t)=$
if $n<=0$ then !tick; clock(t,tick) else delay@d; step($n-1$)
run step(1000))
new tick:chan
let Scan() = ?tick; lenter(count); Scan()
run 100 of Afree()
run (clock(100.0, tick) | Scan())
$100 \times A_{\text {free, }}$ initially.
The height of each rising step is the size of a separate circular polymer.
(Unbiased sample of nine consecutive runs.)

new c@u
$A_{\text {free }}=$
(new Ift@へ; !c(lft); $\left.A_{b l f t}(I f t)\right)+$
?c $(r h t) ; A_{\text {brht }}(r h t)$
$A_{\text {blft }}(\mathrm{lft})=$
!Ift; $A_{\text {free }}+$
?c(rht); $A_{\text {bound }}(\mathrm{lft}, \mathrm{rht})$
$A_{\text {brht }}(r h t)=$
?rht; $A_{\text {free }}$
$A_{\text {bound }}(I f t, r h t)=$
! lft ; $A_{\text {brht }}(r h t)$
Poly/Depolymerization

Monomer
Automata

Free

Bound
both Free

The Law of Mass Interaction

Law of Mass Interaction

The speed of interaction ${ }^{\dagger}$ is proportional to the number of possible interactions.

Decay

Exponential

 Decay lawRate of change proportional to number of possible decays.

Mass interaction

Interaction Law generalizes Decay Law

Mass

Interaction law Rate of change proportional to number of possible interactions
${ }^{+}$speed of interaction (formally definable)
= number of interactions over time
not proportional to the number of interacting processes! $[P]$ is the number of processes P (this is informal; it is only meaningful for a set of processes offering a given action, but a set of such processes can be counted and plotted)

Chemical Law of Mass Action http://en.wikipedia.org/wiki/Chemical_kinetics The speed of a chemical reaction is proportional to the activity of the reacting substances.
(Activity = concentration, for wellstirred aqueous medium)
(Concentration = number of moles per liter of solution)
(Mole $=6.022141 \times 10^{23}$ particles)

Activity and Speed

stochastic algebras disagree!

The speed of interaction is proportional to the number of possible interactions.

c activity: 1 speed: \wedge
= The activity (= "concentration") on a channel is the number of possible interactions on that channel.

The speed of interaction on a channel, is the activity multiplied by the base rate of the channel.
directive sample 0.0110000 directive plot $A 1$ (): $A 2() ; A 3()$
new c1@1.0:chan
new c2@1.0:chan new c3@1.0:chan
let $A 1()=? c 1$
and $B 1()=!c 1$
let A 2()$=\mathrm{do}$? c2 or ?c2 and $B 2()=!c 2$
let A 3()$=$ do ?c3 or ?c3 and $B 3()=$ do !c3 or !c3
run 1000 of (A1() | B1()
$|A 2()| B 2()|A 3()| B 3())$

The mass interaction law [Buchholz] [Priami-Regev-Shapiro-Silverman] is compatible with chemistry [Gillespie] and incompatible with any other stochastic algebra in the literature! (including [Priami]; see [Hermanns])

$$
\text { c activity: } 4
$$

$$
\text { speed: } 4 \wedge
$$

Other algebras assign rates to actions, not channels, with speed laws:

```
\[
2 \Lambda^{*} 2 \Lambda=4 \Lambda^{2}
\]
\[
\max (2 \Lambda, 2 \lambda)=2 \Lambda[\text { Goetz }]
\]
\[
\min (2 \Lambda, 2 \Lambda)=2 \Lambda[\text { Priami }]
\]
```

$$
1 /(1 /(2 \Lambda)+1 /(2 \Lambda))=\Lambda[P E P A]
$$

$$
2 \wedge^{* 1}=2 \Lambda \text { (passive inputs) }
$$


```
c activity: 2
speed: 2^
```


Possible Interactions

The speed of interaction is proportional to the number of possible interactions.
But a process cannot interact with itself.
Assume each process P is in restricted-sum-normal-form. For each channel x :
$\operatorname{In}(x, P)=$ Num of active $? x$ in P
$\operatorname{Out}(x, P)=$ Num of active ! x in P
$\operatorname{Mix}(x, P)=\operatorname{In}(x, P) * \operatorname{Out}(x, P)$
\#interactions that cannot happen
in a given summation P
$\operatorname{In}(x)=\operatorname{Sum} P$ of $\operatorname{In}(x, P)$
$\operatorname{Out}(x)=\operatorname{Sum} P$ of $\operatorname{Out}(x, P)$
$\operatorname{Mix}(x)=$ Sum P of $\operatorname{Mix}(x, P)$
total \#interactions that cannot happen
The global Activity on channel x :

$$
\operatorname{Act}(x)=\left(\operatorname{In}(x)^{\star} \operatorname{Out}(x)\right)-\operatorname{Mix}(x)
$$

total cross product of inputs and outputs minus total \#interactions that cannot happen
The global speed of interaction on a channel x :

$$
\operatorname{speed}(x)=\operatorname{Act}(x)^{\star} \operatorname{rate}(x)
$$

Deriving Back Interaction Laws

The mass action law:

$[A]^{\prime}=-\operatorname{speed}(c)=-\lambda \operatorname{Act}(c)$ $\operatorname{Act}(c)=\left(\operatorname{In}(c)^{*} \operatorname{Out}(c)\right)-\operatorname{Mix}(c)$
$=\left([A]^{\star}[B]\right)-0$

The mixed interaction law:

$[A]^{\prime}=-$ speed $(c)=-\Lambda \operatorname{Act}(c)$ $\operatorname{Act}(c)=\left(\operatorname{In}(c)^{*} \operatorname{Out}(c)\right)-\operatorname{Mix}(c)$ $=\left([A]^{\star}[A]\right)-[A]=[A]^{\star}([A]-1)$ hence $[A]^{\prime}=\because \because \because[A]([A]-1):$

$$
\operatorname{Act}(x)=\left(\operatorname{In}(x)^{\star} \operatorname{Out}(x)\right)-\operatorname{Mix}(x)
$$

The decay law:


```
\([A]^{\prime}=\Sigma\left(c_{i}\right)-\operatorname{speed}\left(c_{i}\right)\)
    \(=\Sigma\left(c_{i}\right)-\lambda \operatorname{Act}\left(c_{i}\right)\)
\(\operatorname{Act}\left(c_{i}\right)=\left(\operatorname{In}\left(c_{i}\right)^{\star} \operatorname{Out}\left(c_{i}\right)\right)-\operatorname{Mix}\left(c_{i}\right)\)
    \(=(1 * 1)-0=1\)
```


Conclusions

Conclusions

- Stochastic Collectives
- Complex global behavior from simple components
- Emergence of collective functionality from "non-functional" components
- (C.f. "swarm intelligence": simple global behavior from complex components)
- Artificial Biochemistry
- Stochastic collectives with Law of Mass Interaction kinetics
- Connections to classical Markov theory, chemical Master Equation, and Rate Equation
- The agent/automata/process point of view
- "Individuals" that transition between states (vs. transmutation between "unrelated" chemical species)
- More appropriate for Systems Biology
- Stochastic π-calculus (SPiM) for investigating stochastic collectives
- Restriction+Communication \Rightarrow Polymerization: FSA that "stick together"

[^0]: directive sample 110.012
 diective poltac: 10

