
Luca Cardelli
Microsoft Research
MSR-UniTN CC&SB

Trento 2006-04-03

www.luca.demon.co.uk

Artificial Biochemistry
Combining Stochastic Collectives

2006-04-03 2

L
u
c
a
 C
a
rd
e
ll
i

Stochastic Collectives

2006-04-03 3

L
u
c
a
 C
a
rd
e
ll
i

Stochastic Collectives

● “Collective”:
– A large set of interacting finite state automata:

●Not quite language automata (“large set”)

●Not quite cellular automata (“interacting” but not on a grid)

●Not quite process algebra (“finite state” and “collective”)

●Not quite calculus (rate of change of “automata”??)

●Cf. “multi-agent systems” and “swarm intelligence”

● “Stochastic”:
– Interactions have rates

● Very much like biochemistry
– Which is a large set of stochastically interacting molecules/proteins

– Are proteins finite state and subject to automata-like transitions?
●Let’s say they are, at least because:

●Much of the knowledge being accumated in Systems Biology
is described as state transition diagrams [Kitano].

2006-04-03 4

L
u
c
a
 C
a
rd
e
ll
i

State Transitions

2006-04-03 5

L
u
c
a
 C
a
rd
e
ll
i

Even More State Transitions

http://www.expasy.ch/cgi-bin/show_thumbnails.pl

2006-04-03 6

L
u
c
a
 C
a
rd
e
ll
i

Reverse Engineering Nature

● That’s what Systems Biology is up against
– Exemplified by a technological analogy:

● Tamagotchi: a technological organism
– Has inputs (buttons) and outputs (screen/sound)

– It has state: happy or needy (or hungry, sick, dead…)

– Has to be petted at a certain rate (or gets needy)

– Each one has a slightly different behavior

● Reverse Engineering Tamagotchi
– Running experiments that elucidate their behavior

– Building models that explain the experiments

● Applications
– Engineering: Can we build our own Tamagotchi? (Sadly, no longer made.)

– Maintenance: Can we fix a broken Tamagotchi?

How often do I have to

exercise my Tamagotchi?

Every Tamagotchi is

different. However we do

recommend exercising at

least three times a day

2006-04-03 7

L
u
c
a
 C
a
rd
e
ll
i

Understanding T.Nipponensis

● Tamagotchi Nipponensis: a stochastic interactive automata
– 40 million sold worldwide; discontinued in 1998
– Still found “in the wild” in Akihabara

● Traditional scientific investigations fail
– Design-driven understanding fails

● We cannot read the manual (Japanese)
● What does a Tamagotchi “compute”? What is its “purpose”?
● Why does it have 3 buttons?

– Mechanistic understanding fails
● Few moving parts. Removing components mostly ineffective or “lethal”
● The “tamagotchi folding problem” (sequence of manufacturing steps)

is too hard and gives little insight on function

– Behavioral understanding fails
● Subjecting to extreme conditions reveals little and may void warranty
● Does not answer consistently to individual stimuli, nor to sequences of stimuli
● There are stochastic variations between individuals

– Ecological understanding fails
● Difficult to observe in its native environment (kids’ hands)
● Mass produced in little-understood automated factories
● It evolved by competing with other products in the baffling Japanese market

– Mathematical understanding fails
● What differential equations does it obey? (Uh?)

Tamagotchi X-ray

Tamagotchi Surgery
http://necrobones.com/tamasurg/

2006-04-03 8

L
u
c
a
 C
a
rd
e
ll
i

A New Approach

● “Systems Technology” of T. Nipponensis
– High-throughput experiments (get all the information you possibly can)

●Decode the entire software and hardware

●Take sequences of tamagotchi screen dumps under different conditions

● Put 300 in a basket and shake them; make statistics of final state

– Modeling (organize all the information you got)
●Ignore the “folding” (manufacturing) problem

●Ignore materials (it’s just something with buttons, display, and a program.)
●Abstract until you find a conceptual model (ah-ha: it’s a stochastic automata).

● Do we understand what stochastic automata collectives can do?

Communicating Tamagotchi

2006-04-03 9

L
u
c
a
 C
a
rd
e
ll
i

Automata Collectives

2006-04-03 10

L
u
c
a
 C
a
rd
e
ll
i

Interacting Automata

Communicating automata: a graphical FSA-like
notation for “finite state restriction-free π-
calculus processes”. Interacting automata do not
even exchange values on communication.

The stochastic version has rates on
communications, and delays.

@λ1
@λ2

@λ3

@λ4

@λ5

@r1

@r2

@r3

?a !a

?b

!b!c

?c

A1

A2

A3

B1

B2B3

C1 C2

C3

new a@r1
new b@r2
new c@r3

A1 = ?a; A2

A2 = !c; A3

A3 = @λ5; A1

B1 = @λ2; B2 + !a; B3

B2 = @λ1; B1

B3 = ?b; B2

C1 = !b; C2 + ?c; C3

C2 = @λ3; C1

C3 = @λ4; C2

A1 | B1 | C1

Communication
channels

A
utom

ata

The system and
initial state

“Finite state” means: no composition or restriction inside recursion.

Analyzable by standard Markovian techniques, by first computing
the “product automata” to obtain the underlying finite Markov
transition system. [Buchholz]

Current State

Interaction
Transition
Delay

2006-04-03 11

L
u
c
a
 C
a
rd
e
ll
i

Interacting Automata Transition Rules

?a !a ?a !a

Interaction

Delay

a@r

@r @r
r

r

Current State

Transition
Delay

2006-04-03 12

L
u
c
a
 C
a
rd
e
ll
i0

20

40

60

80

100

120

140

160

180

200

0 0.02 0.04 0.06 0.08 0.1

A() B()

Groupies and Celebrities

Groupie
(wants to be like somebody different)

Celebrity
(does not want to be like somebody else)

0

20

40

60

80

100

120

140

160

180

200

0 0.5 1 1.5 2

A() B()

always
eventually
deadlock

directive sample 5.0 1000

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; B()

and B() = do !b; B() or ?a; A()

run 100 of (A() | B())

directive sample 0.1 1000

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?a; B()

and B() = do !b; B() or ?b; A()

run 100 of (A() | B())

Unstable because within an A majority, an A has difficulty finding a B to
emulate, but the few B’s have plenty of A’s to emulate, so the majority may
switch to B. Leads to deadlock when everybody is in the same state and there is
nobody different to emulate.

Stable because as soon as a A finds itself in the majority, it is more likely to
find somebody in the same state, and hence change, so the majority is weakened.

A

B

!a

?b

!b

?a

A

B

!a

?a ?b

!b

A stochastic collective of celebrities: A stochastic collective of groupies:

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

B()

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

B()

always
equilibrium

time

#

#A

#
B

2006-04-03 13

L
u
c
a
 C
a
rd
e
ll
i

Ca

Cb

Ga

Gb

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb() Ca() Cb()

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities

directive sample 10.0 1000

directive plot Ga(); Gb(); Ca(); Cb()

new a@1.0:chan()

new b@1.0:chan()

let Ca() = do !a; Ca() or ?a; Cb()

and Cb() = do !b; Cb() or ?b; Ca()

let Ga() = do !a; Ga() or ?b; Gb()

and Gb() = do !b; Gb() or ?a; Ga()

run 1 of (Ca() | Cb())

run 100 of (Ga() | Gb())

A few
Celebrities

Many
Groupies

never
deadlock

!a

?b

!b

?a

!a

?a ?b

!b

A tiny bit of
“noise” can make a
huge difference

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

Gb()

Ga vs. Gb

2006-04-03 14

L
u
c
a
 C
a
rd
e
ll
i

Ga

Gb

Da Db

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb() Da() Db()

!a

?a ?b

!b

Doped Groupies

directive sample 10.0 1000

directive plot Ga(); Gb(); Da(); Db()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; Gb()

and Gb() = do !b; Gb() or ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 1 of (Da() | Db())

run 100 of (Ga() | Gb())

Groupie

never
deadlock

!a !b

A similar way to break the deadlocks: destabilize the groupies by a small perturbation.

Doping(1)

(1)A technical term in microelectronics

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

Gb()

Ga vs. Gb

2006-04-03 15

L
u
c
a
 C
a
rd
e
ll
i

0

20

40

60

80

100

120

140

160

0 50 100 150

1 sample orbit
Ga vs Gb

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb()

Hysteric Groupies

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run 1 of (Da() | Db())

We can get more regular behavior from groupies if they “need more convincing”,
or “hysteresis” (history-dependence), to switch states.

(Still with doping)

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb()

a “solid threshold” to observe switching

A

B
?a
?a

?b
?b

!a

!b

A

B

?a
?a

?b
?b

!a

!b

?a ?b

!a !b

0

20

40

60

80

100

120

140

160

0 50 100 150

1 sample orbit
Ga vs Gb

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

Gb()

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run 1 of (Da() | Db())

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

Gb()

2006-04-03 16

L
u
c
a
 C
a
rd
e
ll
i

0

50

100

150

200

250

300

0 50 100 150 200 250 300

1 sample orbit
A vs B,C

0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5 3

A() B() C()

A B

C
Da Db Dc

Hysteric 3-Way Groupies
directive sample 3.0 1000

directive plot A(); B(); C()

new a@1.0:chan()

new b@1.0:chan()

new c@1.0:chan()

let A() = do !a; A() or ?c; ?c; C()

and B() = do !b; B() or ?a; ?a; A()

and C() = do !c; C() or ?b; ?b; B()

let Da() = !a; Da()

and Db() = !b; Db()

and Dc() = !c; Dc()

run 100 of (A() | B() | C())

run 1 of (Da() | Db() | Dc())

!a !b

!c

?c
?c

!a !b

!c

?a

?b

?a

?b

0

50

100

150

200

250

300

0 50 100 150 200 250 300

B() C()

2006-04-03 17

L
u
c
a
 C
a
rd
e
ll
i

The Strength of Populations

?a @λ!a

@µ

N

B
N

A

directive sample 0.01 1000

directive plot B()

val lam = 1000.0

val mu = 1.0

new a@mu:chan

let A() = !a; A()

and B() = ?a; C()

and C() = delay@lam; B()

run 1000 of (A() | B())

At size 2N, on a shared channel,
µ is N times stronger than λ:

interaction easily wins over delay.

C

0

5000

10000

0 0.0002 0.0004

B()

0

50

100

0 0.05 0.1

B()

0

5

10

0 0.5 1

B()

0

0.5

1

0 10 20

B()

0

500

1000

0 0.005 0.01

B()

Equilibrium

N=1
λ=1
µ=1

N=10
λ=10
µ=1

N=100
λ=100
µ=1

N=1000
λ=1000
µ=1

N=10000
λ=10000
µ=1

fight!fight!

2006-04-03 18

L
u
c
a
 C
a
rd
e
ll
i

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

!b

0

20

40

60

80

100

120

0 20 40 60 80 100

!a !b

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

!b !c

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

!b

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

!b

0

20

40

60

80

100

120

0 20 40 60 80 100

!a !b !c

0

20

40

60

80

100

120

0 20 40 60 80 100

!a !b

0

20

40

60

80

100

120

0 20 40 60 80 100

!a !b

directive sample 110.0 1000

directive plot !a; !b

new a@1.0:chan new b@1.0:chan

let Inv2_hi(a:chan, b:chan) =

do !b; Inv2_hi(a,b) or ?a; Inv2_mi(a,b)

and Inv2_mi(a:chan, b:chan) =

do ?b; Inv2_hi(a,b) or delay@1.0; Inv2_hi(a,b)

or ?a; Inv2_lo(a,b)

and Inv2_lo(a:chan, b:chan) =

do ?b; Inv2_mi(a,b) or delay@1.0; Inv2_mi(a,b)

run 100 of Inv2_hi(a,b)

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S1(a:chan, tock:chan) = do !a; S1(a,tock) or ?tock; ()

let SN(n:int, t:float, a:chan, tick:chan, tock:chan) =

if n=0 then clock(t, tock) else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock))

let raisingfalling(a:chan, n:int, t:float) =

(new tick:chan new tock:chan

run (clock(t,tick) | SN(n,t,a,tick,tock)))

run raisingfalling(a,100,0.5)

Boolean Inverter Collectives

directive sample 110.0 1000

directive plot !a; !b

new a@1.0:chan new b@1.0:chan

let Inv_hi(a:chan, b:chan) =

do !b; Inv_hi(a,b)

or ?a; Inv_lo(a,b)

and Inv_lo(a:chan, b:chan) =

delay@1.0; Inv_hi(a,b)

run 100 of Inv_hi(a,b)

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S1(a:chan, tock:chan) = do !a; S1(a,tock) or ?tock; ()

let SN(n:int, t:float, a:chan, tick:chan, tock:chan) =

if n=0 then clock(t, tock) else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock))

let raisingfalling(a:chan, n:int, t:float) =

(new tick:chan new tock:chan

run (clock(t,tick) | SN(n,t,a,tick,tock)))

run raisingfalling(a,100,0.5)

directive sample 110.0 1000

directive plot !a; !b

new a@1.0:chan new b@1.0:chan

let Inv_hi(a:chan, b:chan) =

do !b; Inv_hi(a,b)

or ?a; Inv_lo(a,b)

and Inv_lo(a:chan, b:chan) =

do ?b; Inv_hi(a,b)

or delay@1.0; Inv_hi(a,b)

run 100 of Inv_hi(a,b)

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S1(a:chan, tock:chan) = do !a; S1(a,tock) or ?tock; ()

let SN(n:int, t:float, a:chan, tick:chan, tock:chan) =

if n=0 then clock(t, tock) else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock))

let raisingfalling(a:chan, n:int, t:float) =

(new tick:chan new tock:chan

run (clock(t,tick) | SN(n,t,a,tick,tock)))

run raisingfalling(a,100,0.5)

!b

?a

!b

?a ?b

!b

?a ?b

?a ?b

directive sample 110.0 1000

directive plot !a; !b; !c; !d

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Inv2_hi(a:chan, b:chan) =

do !b; Inv2_hi(a,b) or ?a; Inv2_mi(a,b)

and Inv2_mi(a:chan, b:chan) =

do ?b; Inv2_hi(a,b) or delay@1.0; Inv2_hi(a,b)

or ?a; Inv2_lo(a,b)

and Inv2_lo(a:chan, b:chan) =

do ?b; Inv2_mi(a,b) or delay@1.0; Inv2_mi(a,b)

run 100 of (Inv2_hi(a,b) | Inv2_lo(b,c))

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S1(a:chan, tock:chan) = do !a; S1(a,tock) or ?tock; ()

let SN(n:int, t:float, a:chan, tick:chan, tock:chan) =

if n=0 then clock(t, tock) else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock))

let raisingfalling(a:chan, n:int, t:float) =

(new tick:chan new tock:chan

run (clock(t,tick) | SN(n,t,a,tick,tock)))

run raisingfalling(a,100,0.5)

!b

?a ?b

?a ?b

!c

?b ?c

?b ?c

perfect
rectifier

hysteresis

in presence of a, b goes low
in absence of a, b goes high

the high b state reinforces
itself (as a population)

input
stimulus

zero-point noise
resistant

b = not a b = not a b = not a b = not a
c = not b

!b
!a

time

!a

#
#
 !b

!c

“signal”

“no signal”

2006-04-03 19

L
u
c
a
 C
a
rd
e
ll
i

0

20

40

60

80

100

120

0 2 4 6 8 10

!a !b !c

0

20

40

60

80

100

120

0 2 4 6 8 10

!a !b !c

0

20

40

60

80

100

120

0 2 4 6 8 10

!a !b !c

0

20

40

60

80

100

120

0 2 4 6 8 10

!a !b !c

0

20

40

60

80

100

120

0 2 4 6 8 10

!a !b !c

Boolean Gate Collectives
c = a or b c = a imply b

!c !c

?a ?b

!c

?a ?b

c = a xor b

!c

?a

?b

!c

?b

?a

?b ?a

Inputs:
10 !a for 4t
2t; 10 !b for 4t

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

val del = 1.0

let Or_hi(a:chan, b:chan, c:chan) =

do !c; Or_hi(a,b,c) or delay@del; Or_lo(a,b,c)

and Or_lo(a:chan, b:chan, c:chan) =

do ?a; Or_hi(a,b,c) or ?b; Or_hi(a,b,c)

run 100 of Or_lo(a,b,c)

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) =

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; ()

run 10 of (new tick:chan run (clock(4.0,tick) | S_a(tick)))

run 10 of (new tick:chan run (clock(2.0,tick) | S_b(tick)))

!c

?a ?b

c = a unless b

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

val del = 1.0

let And_hi(a:chan, b:chan, c:chan) =

do !c; And_hi(a,b,c) or delay@del; And_lo_a(a,b,c)

and And_lo_a(a:chan, b:chan, c:chan) =

do ?a; And_hi(a,b,c) or delay@del; And_lo_b(a,b,c)

and And_lo_b(a:chan, b:chan, c:chan) =

?b; And_lo_a(a,b,c)

run 100 of And_lo_b(a,b,c)

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) =

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; S_b3(tick)

and S_b3(tick:chan) = do !b; S_b3(tick) or ?tick; ()

run 10 of (new tick:chan run (clock(4.0,tick) | S_a(tick)))

run 10 of (new tick:chan run (clock(2.0,tick) | S_b(tick)))

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

val del = 1.0

let Imply_hi_a(a:chan, b:chan, c:chan) =

do !c; Imply_hi_a(a,b,c) or ?a; Imply_lo(a,b,c)

and Imply_hi_b(a:chan, b:chan, c:chan) =

do !c; Imply_hi_b(a,b,c) or delay@del; Imply_lo(a,b,c)

and Imply_lo(a:chan, b:chan, c:chan) =

do ?b; Imply_hi_b(a,b,c) or delay@del; Imply_hi_a(a,b,c)

run 100 of Imply_lo(a,b,c)

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) =

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; ()

run 10 of (new tick:chan run (clock(4.0,tick) | S_a(tick)))

run 10 of (new tick:chan run (clock(2.0,tick) | S_b(tick)))

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

val del = 1.0

let OOlO_hi(a:chan, b:chan, c:chan) =

do !c; OOlO_hi(a,b,c) or delay@del; OOlO_lo_a(a,b,c) or ?b;
OOlO_lo_b(a,b,c)

and OOlO_lo_a(a:chan, b:chan, c:chan) =

?a; OOlO_hi(a,b,c)

and OOlO_lo_b(a:chan, b:chan, c:chan) =

delay@del; OOlO_hi(a,b,c)

run 50 of (OOlO_lo_a(a,b,c) | OOlO_lo_b(a,b,c))

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) =

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; ()

run 10 of (new tick:chan run (clock(4.0,tick) | S_a(tick)))

run 10 of (new tick:chan run (clock(2.0,tick) | S_b(tick)))

c = a and b

!c

?b

?a

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Xor_hi_a(a:chan, b:chan, c:chan) =

do !c; Xor_hi_a(a,b,c) or ?b; Xor_lo_ab(a,b,c) or delay@1.0; Xor_lo_a(a,b,c)

and Xor_hi_b(a:chan, b:chan, c:chan) =

do !c; Xor_hi_b(a,b,c) or ?a; Xor_lo_ab(a,b,c) or delay@1.0; Xor_lo_b(a,b,c)

and Xor_lo_a(a:chan, b:chan, c:chan) =

do ?a; Xor_hi_a(a,b,c) or ?b; Xor_lo_ab(a,b,c)

and Xor_lo_b(a:chan, b:chan, c:chan) =

do ?b; Xor_hi_b(a,b,c) or ?a; Xor_lo_ab(a,b,c)

and Xor_lo_ab(a:chan, b:chan, c:chan) =

do delay@1.0; Xor_hi_a(a,b,c) or delay@1.0; Xor_hi_b(a,b,c)

run 50 of (Xor_lo_a(a,b,c) | Xor_lo_b(a,b,c))

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/200.0 val d = 1.0/ti

let step(n:int) =

if n<=0 then !tick; clock(t, tick) else delay@d; step(n-1)

run step(200))

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) = do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; ()

run 10 of (new tick:chan run (clock(4.0,tick) | S_a(tick)))

run 10 of (new tick:chan run (clock(2.0,tick) | S_b(tick)))

!c

?a

?b

!c

?b

?a

?b ?a

!c

?a

?b

!c

?b

?a

?b ?a

!c

?a

?b

!c

?b

?a

?b ?a

!c

?a

?b

!c

?b

?a

?b ?a

!c !c

?a ?b

!c !c

?a ?b

!c !c

?a ?b

!c !c

?a ?b

!b!a

!c

2006-04-03 20

L
u
c
a
 C
a
rd
e
ll
i

Bidirectional

Polymerization
new c@µ new stop@1.0

Afree =

(new rht@λ; !c(rht); Abrht(rht))

+ ?c(lft); Ablft(lft)

Ablft(lft) =

(new rht@λ; !c(rht); Abound(lft,rht))

Abrht(rht) =

?c(lft); Abound(lft,rht)

Abound(lft,rht) = ?stop

A A A A

?c(r) !c(νl)

Ar

Af

Al

Ab

?c(l)

?c(l)

!c(νr)

!c(νr)

Free

Bound
right

Bound
left

Bound
both

Monomer
Automata

Afree

Ablft

Abrht

Abound

!c(νr)?c(l)

?c(l)

?c(l)

?c(l)

!c(νr)

!c(νr)!c(νr)

Free

Bound
right

Bound
left

Bound
both

Free

Bound
right

Bound
left

Bound
both

directive sample 10000.0

directive plot Afree(); Ablft(); Abrht(); Abound()

val lam = 1.0 val mu = 1.0

new c@mu:chan(chan) new stop@1.0:chan

let Afree() =

(new rht@lam:chan run

do !c(rht); Abrht(rht)

or ?c(lft); Ablft(lft))

and Ablft(lft:chan) =

(new rht@lam:chan run

!c(rht); Abound(lft,rht))

and Abrht(rht:chan) =

?c(lft); Abound(lft,rht)

and Abound(lft:chan, rht:chan) =

?stop

run (2 of Afree())

Communicating Automata
Bound output !c(νr) and input ?c(l)
on automata transitions
to model complexation

2006-04-03 21

L
u
c
a
 C
a
rd
e
ll
i

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

Bidirectional Polymerization

Circular Polymer Lengths
directive sample 1000.0

directive plot Abound(); ?count

type Link = chan(chan)

type Barb = chan

val lam = 1000.0 (* set high for better counting *)

val mu = 1.0

new c@mu:chan(Link)

new enter@lam:chan(Barb)

new count@lam:Barb

let Afree() =

(new rht@lam:Link run

do !c(rht); Abrht(rht)

or ?c(lft); Ablft(lft))

and Ablft(lft:Link) =

(new rht@lam:Link run

!c(rht); Abound(lft,rht))

and Abrht(rht:Link) =

?c(lft); Abound(lft,rht)

and Abound(lft:Link, rht:Link) =

do ?enter(barb); (?barb | !rht(barb))

or ?lft(barb); (?barb | !rht(barb))

(* each Abound waits for a barb, exhibits it, and passes it to

the right so we can plot number of Abound in a ring *)

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/1000.0 val d = 1.0/ti

let step(n:int) =

if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(1000))

new tick:chan

let Scan() = ?tick; !enter(count); Scan()

run 100 of Afree()

run (clock(100.0, tick) | Scan())

Scanning and counting the size of the circular polymers (by a cheap trick).

Polymer formation is complete within 10t; then a different polymer is scanned every 100t.

100xAfree, initially.

The height of each rising
step is the size of a
separate circular polymer.
(Unbiased sample of nine
consecutive runs.)

2006-04-03 22

L
u
c
a
 C
a
rd
e
ll
i

Actin-like

Poly/Depolymerization
Ap pA

A p A p

new c@µ

Afree =

(new lft@λ; !c(lft); Ablft(lft)) +

?c(rht); Abrht(rht)

Ablft(lft) =

!lft; Afree +

?c(rht); Abound(lft,rht)

Abrht(rht) =

?rht; Afree

Abound(lft,rht) =

!lft; Abrht(rht)

!c(νl)?c(r)

?r !l

Af

Al

Ab

!l

?c(r)

?r

?c(r)
!l

Free

Bound
right

Bound
left

Bound
both

Ar

!c(νl)

Monomer
Automata

r←νl!l

?c(r)

?r

?c(r)
!l

Free

Bound
left

Bound
both

!c(νl)

!l

?c(r)

?r

?c(r)
!l

Free

Bound
right

Bound
both

!c(νl)

Bound
right

Bound
left

2006-04-03 23

L
u
c
a
 C
a
rd
e
ll
i

The Law of
Mass Interaction

2006-04-03 24

L
u
c
a
 C
a
rd
e
ll
i

Law of Mass Interaction

[D]’ = -λ [D]

The speed of interaction† is proportional
to the number of possible interactions.

@λ
D
1000

E

[E]’ = λ [D]

† speed of interaction (formally definable)

= number of interactions over time

not proportional to the number of interacting processes!

[P] is the number of processes P (this is informal; it is only
meaningful for a set of processes offering a given action, but
a set of such processes can be counted and plotted)

Decay

Exponential
Decay law
Rate of change

proportional to number
of possible decays.

[A]’ = -λ [A] [B]

[B]’ = -λ [A] [B]

[AB]’ = λ [A] [B]

?c
A

B

1000

1000

!c

AB
@λ

Mass interaction

Mass
Interaction law

Rate of change
proportional to number
of possible interactions

Interaction
Law generalizes
Decay Law

0

200

400

600

800

1000

0 0.002 0.004 0.006 0.008 0.01

D() A1() A2()

A4() A8()

λ=1

Chemical Law of Mass Action
http://en.wikipedia.org/wiki/Chemical_kinetics

The speed of a chemical reaction is
proportional to the activity of the
reacting substances.

(Activity = concentration, for well-
stirred aqueous medium)

(Concentration = number of moles per
liter of solution)

(Mole = 6.022141×1023 particles)

decay

interaction

directive sample 0.01 1000

directive plot D(); A1(); A2(); A4(); A8()

new c1@1.0: chan() new c2@2.0: chan()

new c4@4.0: chan() new c8@8.0: chan()

let D() = delay@1.0

let A1() = ?c1 and B1() = !c1

let A2() = ?c2 and B2() = !c2

let A4() = ?c4 and B4() = !c4

let A8() = ?c8 and B8() = !c8

run 1000 of (D() | A1() | B1() | A2()

| B2() | A4() | B4() | A8() | B8())

[A]0=1000

λ=1,2,4,8

2006-04-03 25

L
u
c
a
 C
a
rd
e
ll
i

Activity and Speed
stochastic algebras disagree!

?c
A

B
!c

@λ
A

B

@λ

?c

?c

!c

A

B

@λ

?c

?c

!c

!c

The speed of interaction is proportional
to the number of possible interactions.

c activity: 1

speed: λ
c activity: 2

speed: 2λ
c activity: 4

speed: 4λ

directive sample 0.01 10000

directive plot A1(); A2(); A3()

new c1@1.0:chan

new c2@1.0:chan

new c3@1.0:chan

let A1() = ?c1

and B1() = !c1

let A2() = do ?c2 or ?c2

and B2() = !c2

let A3() = do ?c3 or ?c3

and B3() = do !c3 or !c3

run 1000 of (A1() | B1()

| A2() | B2() | A3() | B3())

Other algebras assign rates to actions,
not channels, with speed laws:
2λ*2λ = 4λ2

max(2λ,2λ) = 2λ [Goetz]
min(2λ,2λ) = 2λ [Priami]
1/(1/(2λ)+1/(2λ)) = λ [PEPA]
2λ*1 = 2λ (passive inputs)

The mass interaction law [Buchholz]
[Priami-Regev-Shapiro-Silverman] is
compatible with chemistry
[Gillespie] and incompatible with
any other stochastic algebra in the
literature! (including [Priami]; see
[Hermanns])

0

200

400

600

800

1000

0 0.002 0.004 0.006 0.008 0.01

A1() A2() A3()

?c | !c

?c+?c | !c

?c+?c | !c+!c

The activity (= “concentration”) on a channel is the
number of possible interactions on that channel.

The speed of interaction on a channel, is the
activity multiplied by the base rate of the channel.

=

2006-04-03 26

L
u
c
a
 C
a
rd
e
ll
i

Forbidden (Mix)
interactions

Assume each process P is in restricted-
sum-normal-form. For each channel x:

In(x,P) = Num of active ?x in P

Out(x,P) = Num of active !x in P

Mix(x,P) = In(x,P)*Out(x,P)

In(x) = Sum P of In(x,P)

Out(x) = Sum P of Out(x,P)

Mix(x) = Sum P of Mix(x,P)

The global Activity on channel x:

The global speed of interaction on a
channel x:

Act(x) = (In(x)*Out(x))-Mix(x)

Possible Interactions

!3a

?2a
In(a,A) = 2

Out(a,A) = 3

Mix(a,A) =

2*3 = 6

?2a

!1a

BA B
In(a,B) = 2

Out(a,B) = 1

Mix(a,B) =

2*1 = 2

Act(a) = (In(a) * Out(a)) – Mix(a) = 4*4 – 8 = 8

speed(a) = Act(a)*rate(a) = 8*rate(a)

In(a) = 2+2 = 4

Out(a) = 3+1 = 4

Mix(a,P) = 6+2 = 8

6

2

speed(x) = Act(x)*rate(x)

6 2

#interactions that cannot happen
in a given summation P

total #interactions that cannot happen

total cross product of inputs and outputs

minus total #interactions that cannot happen

The speed of interaction is proportional to
the number of possible interactions.

But a process cannot interact with itself.

2006-04-03 27

L
u
c
a
 C
a
rd
e
ll
i

[A]’ = -speed(c) = -λ Act(c)

Act(c) = (In(c)*Out(c))-Mix(c)

= ([A]*[A]) – [A] = [A]*([A]-1)

hence [A]’ = -λ [A] ([A]-1)

Deriving Back Interaction Laws

?c
A

B
!c

@λ

[A]’ = -speed(c) = -λ Act(c)

Act(c) = (In(c)*Out(c))-Mix(c)

= ([A]*[B]) – 0

hence [A]’ = -λ [A][B]

!c@λ

?c

A

@λ

The mixed interaction law:

A
@λ

[A]’ = Σ(ci) -speed(ci)

= Σ(ci) -λ Act(ci)

Act(ci) = (In(ci)*Out(ci))-Mix(ci)

= (1*1) – 0 = 1

hence [A]’ = -λ [A]

?ciAi

!ci

@λ

The mass action law: The decay law:

(Each Ai has its own
private channel ci)

=def

Act(x) = (In(x)*Out(x))-Mix(x)

2006-04-03 28

L
u
c
a
 C
a
rd
e
ll
i

Conclusions

2006-04-03 29

L
u
c
a
 C
a
rd
e
ll
i

Conclusions

● Stochastic Collectives
– Complex global behavior from simple components

– Emergence of collective functionality from “non-functional” components

– (C.f. “swarm intelligence”: simple global behavior from complex components)

● Artificial Biochemistry
– Stochastic collectives with Law of Mass Interaction kinetics

– Connections to classical Markov theory,
chemical Master Equation, and Rate Equation

● The agent/automata/process point of view
– “Individuals” that transition between states
(vs. transmutation between “unrelated” chemical species)

– More appropriate for Systems Biology

– Stochastic π-calculus (SPiM) for investigating stochastic collectives
●Restriction+Communication ⇒ Polymerization: FSA that “stick together”

