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Number rules the universe. Pythagoras.
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Interacting Automata

Communicating automata: a graphical FSA-like 
notation for “finite state restriction-free π-
calculus processes”. Interacting automata do not 
even exchange values on communication.

The stochastic version has rates on 
communications, and delays.

@λ1
@λ2

@λ3

@λ4

@λ5

@r1

@r2

@r3

?a !a

?b

!b!c

?c

A1

A2

A3

B1

B2B3

C1 C2

C3

new a@r1 
new b@r2 
new c@r3

A1 = ?a; A2

A2 = !c; A3

A3 = @λ5; A1

B1 = @λ2; B2 + !a; B3

B2 = @λ1; B1

B3 = ?b; B2

C1 = !b; C2 + ?c; C3

C2 = @λ3; C1

C3 = @λ4; C2

A1 | B1 | C1

Communication 
channels

A
utom

ata

The system and 
initial state

“Finite state” means: no composition or restriction inside recursion.

Analyzable by standard Markovian techniques, by first computing 
the “product automaton” to obtain the underlying finite Markov 
transition system. [Buchholz]

Current State

Interaction
Transition
Delay
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Interacting Automata Transition Rules

?a !a ?a !a

Interaction

Delay

a@r

@r @r
r

r

Current State

Transition
Delay
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Delay Automata
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Delay

BA
@λ

directive sample 3.0

directive plot B1(); B2(); B3(); B4(); B5(); B6(); 

A1(); A2(); A3(); A4(); A5(); A6()

let A1() = delay@1.0; B1()   and B1() = ()

let A2() = delay@2.0; B2()   and B2() = ()

let A3() = delay@3.0; B3()   and B3() = ()

let A4() = delay@4.0; B4()   and B4() = ()

let A5() = delay@5.0; B5()   and B5() = ()

let A6() = delay@6.0; B6()   and B6() = ()

run 100 of (A1() | A2() | A3() | A4() | A5()| A6())

P(delay≤t ) = 1-e-λt

P(delay>t ) = e-λt

B1

A1

λ = 1..6

[A]• = -λ [A]

[B]• = λ [A]

( 
x
10
0
0
)

half
life

[P] is the number of P’s

A = @λ;B
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A() B()

Choice

=

@1

@1

A

@2
B

directive sample 4.0 10000

directive plot A(); B()

let A() = do delay@1.0 or delay@1.0

and B() = delay@2.0

run 1000 of (A() | B())

Decay by two or more processes
A quantity may decay via two or more different processes simultaneously. 

These processes may have different probabilities of occurring, and thus will 

occur at different rates with different half-lives. For instance, in the case of 

two simultaneous decay processes, the decay of the quantity N is given by:

Hence we can sum the rates

The only extra law of Strong 
Markovian Bisimulation (Lumpability)

P(min(Xλ,Yµ)>t)

P(Zλ+µ>t)
This is the min of two random variables (i.e. a duration which is 
the min of two durations). In the case of exponential 
distributions, the min is another exponential distribution.

@λ;C + @µ;C  =  @(λ+µ);C

C

C

C

Exponential distributions 
are closed under choice.



2006-05-26 8

L
u
c
a
 C

a
rd

e
lli

0

500

1000

1500

2000

2500

0 1 2 3 4

B() D()

Join

directive sample 4.0 10000

directive plot A(); B(); C(); ?AC

new AC@1.0: chan

let A() = do delay@1.0; B() or ?AC

and C() = do delay@1.0; B() or ?AC

and B() = ()

run 1000 of (A() | C())
@1

A @1

C

B

1000

1000

≠

2000

D
@2

B

@λ;B | @µ;B  ≠ @(λ+µ); B

Hmm, so what is this B 
distribution? 
(wait until later)

directive sample 4.0 10000

directive plot B(); D()

let D() = delay@2.0; B()

and B() = ()

run 2000 of D()

0

500

1000

1500

2000

2500

0 1 2 3 4

A() B() C() ?AC

B

B
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A() B1() B2() C()

Idle Loops

@1
B1

@1

@1
A =

directive sample 6.0 1000

directive plot A(); B1(); B2(); C()

let A() = delay@1.0; ()

let B1() = do delay@1.0; B1() or delay@1.0; ()

let B2() = do delay@2.0; B2() or delay@1.0; ()

let C() = do delay@1.0; () or delay@1.0; ()

run 2000 of (A() | B1() | B2() | C())

@1
B2

@2

=

≠
@1

C

@1

B2 is depleted at rate 
3 and replenished at 

rate 2, hence…

C A
B1 B2
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Sequence

directive sample 4.0 10000

directive plot A(); B(); C()

let A() = delay@1.0; B()

and B() = delay@1.0; C()

and C() = ()

run 1000 of A()

A
@1@1

CB

≠
@2

- -
0

2000

4000

6000

8000

10000

12000

0 1 2 3 4

A() B() C()

A

C

B

This is the sum of two random variables (i.e. a duration which is 
the sum of two durations). In the case of exponential 
distributions, the (discrete) sum B is an Erlang distribution.

On the other hand, this means that networks of 
exponential distributions can express more (much 
more) than just exponential distributions. (Can 
densely approximate any probability distribution.)

@λ; @µ; C  =  ??

Exponential distributions are 
not closed under sequence.
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A() B()

Unbounded Concurrency

@1
A B

@1
A B

@2
C D

directive sample 4.0 10000

directive plot A(); B()

let A() = delay@1.0; B()

and B() = ()

run 1000 of A()

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A() B() C() D()
directive sample 4.0 10000

directive plot A(); B(); C(); D()

let A() = delay@1.0; B()

and B() = ()

let C() = delay@2.0; D()

and D() = ()

run 1000 of (A() | C())

No side effect on A or B. 
(E.g. they don’t get “slower” because 
something else is running!)

A

B

A

B

C

D

A      B    ⇒ A|C        B|C@λ @λ
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Asynchronous Interleaving

@1
A B

@2
C D

directive sample 4.0 10000

directive plot A(); B(); C(); D()

let A() = delay@1.0; B()

and B() = ()

let C() = delay@2.0; D()

and D() = ()

run 1000 of (A() | C())

@2

@1

Y
A

B

C

D

@2
D

@1
B

directive sample 4.0 10000

directive plot 

?YA; B(); ?YC; D(); Y(); A(); C()

new YA@1.0:chan new YC@1.0:chan

let A() = do delay@1.0; B() or ?YA

and B() = ()

let C() = do delay@2.0; D() or ?YC

and D() = ()

let Y() = 

do delay@1.0; (B() | C()) 

or delay@2.0; (A() | D())
or ?YA or ?YC

run 1000 of Y()

1000

1000

1000

333

333

333

667

667

667

1000

1000

Y

A

B

C

D

@λ;B | @µ;D  =  @λ;(B | @µ;D) + @µ;(@λ;B | D)

Amazingly, the B’s and the D’s from the two 
branches sum up to exponential distributions

Interactive Markov Chains. Sec 4.1.2  

Y+A

Y+C

N.B. just to talk about this law, we need 
to exceed the automata framework and 
move to process algebra in order to have 
states that split.
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0
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1000

1500

2000

2500

0 1 2 3 4

A() B() C() ?AC

B

Join Again

@λ;B | @λ;B  

=  @λ;(B | @λ;B) + @λ;(@λ;B | B) by Interleaving

=  @2λ;(B | @λ;B)    by Choice

= 

@λ;B | @µ;B  =  @λ;(B | @µ;B) + @µ;(@λ;B | B)

1000

E
B

D B

@2

@1

directive sample 4.0 10000

directive plot B(); D(); E()

let E() = delay@2.0; (B() | D())

and D() = delay@1.0; B()

and B() = ()

run 1000 of E()

@1

A @1

C

B

1000

1000

directive sample 4.0 10000

directive plot A(); B(); C(); ?AC

new AC@1.0: chan

let A() = do delay@1.0; B() or ?AC

and C() = do delay@1.0; B() or ?AC

and B() = ()

run 1000 of (A() | C())

That only works if the two delays are equal; 
in general, by Interleaving:
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0

100
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400

500

0 2 4 6 8 10

s1() s2() s3()

Loops

directive sample 10.0 1000

directive plot s1(); s2(); s3()

let s1() = delay@1.0; s2()

and s2() = delay@1.0; s3()

and s3() = delay@1.0; s1()

run 1000 of s1()

directive sample 10.0 1000

directive plot s1(); s2(); s3(); s4(); 
s5(); s6(); s7(); s8(); s9()

let s1() = delay@1.0; s2()

and s2() = delay@1.0; s3()

and s3() = delay@1.0; s4()

and s4() = delay@1.0; s5()

and s5() = delay@1.0; s6()

and s6() = delay@1.0; s7()

and s7() = delay@1.0; s8()

and s8() = delay@1.0; s9()

and s9() = delay@1.0; s1()

run 1000 of s1()

9-loop3-loop

@1

@1 @1
s2

s1 s3
1000

s2

s3

s4

s7

s5
s6

s9s1

s8

1000
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Interacting Automata
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From Delay to Interaction

D

?a

!a

A B

C

BA

: transitions that have a rate

Delay Interaction
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B’s turn into C’s much faster than A’s turn into B’s.
Now we will spend time understanding 
why that happens and what it means.

Examples

?a
A B

1000

C

@1.0 

directive sample 0.05 1000

directive plot A(); B(); C()

new a@1.0: chan

let A() = ?a; B()

and B() = ()

and C() = !a; C()

run (1000 of A() | 100 of C())

(* try 1,10,1000 of C() *)

A B
@1.0 

!a ?a

C

@1.0 

directive sample 0.05 1000

directive plot A(); B()

new a@1.0: chan

let A() = 

do !a; A() or delay@1.0; B()

and B() = ?a; C()

and C() = ()

run (1000 of A() | 1000 of B())

That’s A
where is B?

ZOOM
There is B!

A

!a

1000

100

1000
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The Rate of What?

● In chemistry: 
– Each reaction involves 2 molecules, and each reaction has a rate. 

Rates belongs to reactions. Molecules do not have rates. 

● In process algebras:
– Should rates belong to:

● each individual action? only outputs? delays only? 

– The rate of a synchronization of two actions should be the:
● max? product? undefined if different? infinite (except for delays)?

– All that has been tried.

● We go back to chemistry 
– Rates belong to channels. (This is called the “biochemical”

stochastic π-calculus by Priami-Regev-Shapiro-Silverman)

● Issues:
– Multiple activities on the same channel (concentrations of 

molecules involved in a reaction: mass action law of chemistry).
– Choices between different channels (molecules involved in 

multiple reactions: still standard chemistry).
– In biochemistry, rates of homodimerization (a molecule can 

interact with a copy of itself, but not with itself).

D

?a

!a

@λ

A B

C

Rates belong 
to channels

not to actions!
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Chemical Reaction Rates

http://en.wikipedia.org/wiki/Reaction_rate

The reaction rate for a reactant or product in a 
particular reaction is defined as the amount (in 
moles or mass units) per unit time per unit 
volume that is formed or removed. 

Reaction rate is often expressed in the units 
mol/Ls (where 1 mole is a dimensionless 
constant equal to the Avogadro number).

Concentration is mol/L , hence rate is 
concentration/s.

One also often sees µM (one millionth of 
a mole per liter).That’s a concentration, 
not a mole number.
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B

B

The Concentration of What?
If P is a process (state), then:

[P] is the function that at time t gives the quantity of P

N.B.; Avogadro’s number (~6.022×1023) relates concentration to quantity of 
molecules. Hence we usually identify concentration=quantity. Remember, 
though that increasing quantity then means increasing concentration, not 
volume, of solution.

This notion of [P] assumes some way of counting P’s, i.e. some way of telling 
when two P are equal, i.e. a congruence relation on processes. 

A simpler option (and what is actually done in SPiM) is never to count 
“processes” but rather to count “offers of communication” that processes 
are performing, i.e. active actions (a.k.a. “barbs”). 

If b is a barb (“?c” or “!c”) then:

[b] is the function that at time t gives the quantity of b

If we see P as an automaton, this is very easy to arrange: add a barb to the 
“current” state of the automaton corresponding to P (e.g. a unique ?_P that 
nobody ever uses). Then we set [P] = [?_P].

We can use barbs to count processes.

Concentrations 
belong to actions
not to processes!

A ?c

?c

!c

[?c]now = 2
[!c]now = 2

[A]now = [?_A]now = 1
[B]now = [?_B]now = 2

!c

?_B

?_B

?_A
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The Rate of Change of Concentrations

A differential equation

[P]• = ...

represents the rate of change of the number (a.ka. concentration) of P’s over time.

In general we may have a system of differential equations among concentrations:

[A]• = ... [A] ... [B] ... [C] ...

[B]• = ... [A] ... [B] ... [C] ...

[C]• = ... [A] ... [B] ... [C] ...

which may be hard to solve symbolically, in which case we will have to solve it numerically 
(for some specific values of initial concentrations).

Derivative is an operator that maps continuous functions to continuous functions. 
It is defined [Newton] as the higher-order function:

derivative: (R→R)→(R→R)  =  λf. λx. lim(h→0). (f(x+h)-f(x))/h

f• stands for derivative(f)   (f [Newton], f’ [Lagrange])
•
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The Law of Mass Interaction

[D]• =  -λ [D]    

The speed of interaction† is proportional 
to the number of possible interactions.

@λ
D
1000

E

[E]• = λ [D] 

† speed of interaction (formally definable) 

= number of interactions over time

not proportional to the number of interacting processes!

[P] is the number of processes P (this is informal; it is only 
meaningful for a set of processes offering a given action, but 
a set of such processes can be counted and plotted)

Decay

Exponential
Decay law
Rate of change 

proportional to number 
of possible decays.

[A]• =  -λ [A] [B]

[B]• = -λ [A] [B]

[AB]• = λ [A] [B]

?c
A

B

1000

1000

!c

AB
@λ

Mass interaction

Mass 
Interaction law

Rate of change 
proportional to number 
of possible interactions

Interaction 
Law generalizes  
Decay Law

0

200

400

600

800

1000

0 0.002 0.004 0.006 0.008 0.01

D() A1() A2()

A4() A8()

λ=1

Chemical Law of Mass Action
http://en.wikipedia.org/wiki/Chemical_kinetics

The speed of a chemical reaction is 
proportional to the activity of the 
reacting substances. 

Activity = concentration, for well-
stirred aqueous medium 

Concentration = number of moles per 
liter of solution

Mole = 6.022141×1023 particles

decay

interaction
(much faster!)

directive sample 0.01 1000

directive plot D(); A1(); A2(); A4(); A8()

new c1@1.0: chan()   new c2@2.0: chan()

new c4@4.0: chan()   new c8@8.0: chan()

let D() = delay@1.0

let A1() = ?c1 and B1() = !c1

let A2() = ?c2 and B2() = !c2

let A4() = ?c4 and B4() = !c4

let A8() = ?c8 and B8() = !c8

run 1000 of (D() | A1() | B1() | A2() 

| B2() | A4() | B4() | A8() | B8())

[A]0=1000

λ=1,2,4,8

It’s not an opinion, it’s the Law!
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Activity and Speed
stochastic algebras disagree!

?c
A

B
!c

@λ
A

B

@λ

?c

?c

!c

A

B

@λ

?c

?c

!c

!c

The speed of interaction is proportional 
to the number of possible interactions.

c activity: 1

speed: λ
c activity: 2

speed: 2λ
c activity: 4

speed: 4λ

directive sample 0.01 10000

directive plot A1(); A2(); A3()

new c1@1.0:chan 

new c2@1.0:chan

new c3@1.0:chan

let A1() = ?c1

and B1() = !c1

let A2() = do ?c2 or ?c2

and B2() = !c2

let A3() = do ?c3 or ?c3

and B3() = do !c3 or !c3

run 1000 of (A1() | B1() 

| A2() | B2() | A3() | B3())

Other algebras assign rates to actions, 
not channels, with speed laws: 
2λ*2λ = 4λ2

max(2λ,2λ) = 2λ [Goetz]
min(2λ,2λ) = 2λ [Priami]
1/(1/(2λ)+1/(2λ)) = λ [PEPA]
2λ*1 = 2λ (passive inputs)

The mass interaction law [Buchholz] 
[Priami-Regev-Shapiro-Silverman] is 
compatible with chemistry 
[Gillespie] and incompatible with 
any other stochastic algebra in the 
literature! (including [Priami]; see 
[Hermanns])

0

200

400

600

800

1000

0 0.002 0.004 0.006 0.008 0.01

A1() A2() A3()

?c | !c 

?c+?c | !c 

?c+?c | !c+!c 

The activity (= “concentration”) on a channel is the 
number of possible interactions on that channel. 

The speed of interaction on a channel, is the 
activity multiplied by the base rate of the channel.

=



2006-05-26 24

L
u
c
a
 C

a
rd

e
lli

The Strength of Populations

?a @λ!a

@µ

N

B
N

A

directive sample 0.01 1000

directive plot B()

val lam = 1000.0     

val mu = 1.0

new a@mu:chan

let A() = !a; A()

and B() = ?a; C()     

and C() = delay@lam; B() 

run 1000 of (A() | B())

At size 2N, on a shared channel, 
µ is N times stronger than λ: 

interaction easily wins over delay.

C

0

5000

10000

0 0.0002 0.0004

B()

0

50

100

0 0.05 0.1

B()

0

5

10

0 0.5 1

B()

0

0.5

1

0 10 20

B()

0

500

1000

0 0.005 0.01

B()

Equilibrium

N=1
λ=1
µ=1

N=10
λ=10
µ=1

N=100
λ=100
µ=1

N=1000
λ=1000
µ=1

N=10000
λ=10000
µ=1

fight!λ-µ fight!
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Mixed Interaction
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The Law of Mixed Interaction
for processes offering both ?a and !a actions

[A]• =  -2λ [A] ([A]-1)

Mixed interaction

Mixed
Interaction 

law

!a@λ

?a

A
1000

@λ

The speed of interaction is proportional 
to the number of possible interactions.

But a process cannot interact with itself.

B
@λ

directive sample 0.1 10000

directive plot A(); B()

new a@1.0:chan

let A()= do ?a or !a

let B() = delay@1.0

run 1000 of (A() | B())

0

200

400

600

800

1000

1200

0 0.02 0.04 0.06 0.08 0.1

A() B()

A

B In CCS-style process algebras, not 
even [Priami-Regev-Shapiro-
Silverman] or BioSPI have this law 
in full generality. It was first 
worked out by [Block et al (unpub)], 
and only SPIM implements it.

!a

?a

A

1 process, 
0 interactions

!a

?a

A

!a

?a

A

2 processes, 
2 interactions

!a

?a

A

!a

?a

A

!a

?a

A

3 processes, 
6 interactions

2 A are 
“consumed” for 
each interaction

number of 
interactions

Note for later: Hence, if we want use 3 such 
processes to model “the 3 possible collisions 
between 3 particles”, then we need to divide 
the rate λ by 2, because this model gives 6 
interactions, not 3, between 3 processes
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Forbidden (Mix) 
interactions

Assume each process P is in restricted-
sum-normal-form. For each channel x:

In(x,P) = Num of active ?x in P

Out(x,P) = Num of active !x in P

Mix(x,P) = In(x,P)*Out(x,P)

In(x) = Sum P of In(x,P)

Out(x) = Sum P of Out(x,P)

Mix(x) = Sum P of Mix(x,P)

The global Activity on channel x:

The global speed of interaction on a 
channel x:

Act(x) = (In(x)*Out(x))-Mix(x)

Possible Interactions

!3a

?2a
In(a,A) = 2

Out(a,A) = 3

Mix(a,A) = 

2*3 = 6

?2a

!1a

BA B
In(a,B) = 2

Out(a,B) = 1

Mix(a,B) = 

2*1 = 2

Act(a) = (In(a) * Out(a)) – Mix(a) = 4*4 – 8 = 8

speed(a) = Act(a)*rate(a) = 8*rate(a)

In(a) = 2+2 = 4

Out(a) = 3+1 = 4

Mix(a) = 6+2 = 8

6

2

speed(x) = Act(x)*rate(x)

6 2

#interactions that cannot happen 
in a given summation P

total #interactions that cannot happen 

total cross product of inputs and outputs

minus total #interactions that cannot happen 

The speed of interaction is proportional to 
the number of possible interactions.

(And a process cannot interact with itself.)

This is the SPiM Activity computation.
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Symmetric Reactions by Mixed Choice

Consider a reaction

A + B �r C

which has mass action kinetics:

[C]• = r[A][B]

[A]• = [B]• = -r[A][B]

because [A][B] is the number of possible collisions. 
For [A]=1 and [B]=1 we have speed

r * 1 * 1 = r

i.e. two single molecules interact at speed r, as 
expected.

!x

?x

P @r

In(x,P) = 1,   Out(x,P) = 1
Mix(x,P) = In(x,P)*Out(x,P) = 1

For n such processes:

In(x) = Sum P of In(x,P) = n*1 = n

Out(x) = Sum P of Out(x,P) = n*1 = n

Mix(x) = Sum P of Mix(x,P) = n*1 = n

The global Activity on channel x:

Act(x) = (In(x)*Out(x))-Mix(x) = n2-n= n*(n-1)

The global speed on channel x:

speed(x) = rate(x)*Act(x) =

r*n*(n-1)
While 1 process has speed=0, as expected,

2 processes have speed=r*2, not r.

We are off by a factor of 2.

Consider now a symmetric reaction

A + A �r C

which has mass action kinetics:

[C]• = r[A]([A]-1)½

[A]• = -2r[A]([A]-1)½ = -r[A]([A]-1)

because [A]([A]-1)½ is the number of possible 
collisions (symmetric interactions) in [A] molecules! 

For [A]=1 we have speed

r * 1 * 0 * ½ = 0

since a single molecule does not collide.

For [A]=2 we have speed

r * 2 * 1 * ½ = r

so two single molecules collide at rate r, as before.  
For [A]=3 we have speed=3, since 3 molecules have 3 
possible collisions. Etc. For [A]=n we have as reaction 
rate (i.e. as C production rate):

r*n*(n-1)*½

If we model symmetric reactions with mixed 
choice at rate r, we get the wrong answer:

The rate of a channel modeling a symmetric 
reaction must be halved. [Shapiro 2001]

A  =?
C

(P|P�C)
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Weighted Actions

?go_faster

?go_slower

!2a!a!wc
A B

!c

A B

!c

w=def

Activity = w
(similarly for ?wc)

Weighted Actions [Buchholz]

Can generalize w to a real number, 
and to input-bound variables.

In general, we can allow real numbers as weights, and use them in the activity computation:

In(x,P) = Sum of weights of active ?x in P

Out(x,P) = Sum of weights of active !x in P

!x

?x

P x@½r

?wx

Q

!wx

x@r

Exercise: Find a weight w such that the following automata interact at the same apparent rate.

I.e., instead of “fixing” the rate of symmetric reaction, fix the way they are modeled.
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Speed of Symmetric Reactions
Here is a mixed choice interaction 
representing a symmetric reaction, 
where the rate has been halved. The B 
reaction is about as fast as the A 
reaction, but it uses only half the 
number of processes.

directive sample 0.01 10000

directive plot A1(); A2(); B(); ?a1a2

new a1a2@1.0:chan

new a@1.0:chan

new b@0.5:chan

let A1() = do ?a or ?a1a2

and A2() = do !a or ?a1a2

let B()= do ?b or !b

run 1000 of (A1() | A2())

run 1000 of B()!b

?b

B
1000

@0.5

A1

A2

1000

?a1000

!a

@1.0

Symmetric reactions use 
half the materials of 

binary reactions and are 
only infinitesimally slower

[Ai]
• = -1.0*[A1]*[A2]

[B]• = -2*(1.0*½)*[B]*([B]-1)

= -1.0*[B]*([B]-1)

2*B consumed in each reaction 

artificially halved rate

missing ½ factor 
because computed 
by the wrong mixed 
choice model

Cf.: homodimerization 
(symmetric complexation) is 
pervasive in biochemistry.
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Summary

● Delay Automata
– Governed by the exponential decay law

● Interacting Automata
– Governed by the mass action law

– Be careful about symmetric interactions

● The Law of Mass Interaction
– The speed of interaction is proportional 
to the number of possible interactions

– Summarizes all of the above



Q?
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Exercise Solution
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Symmetric Reactions with Weighted Actions
Or else we can use the right mixed 
choice model, via weighted actions!

!x

?x

P @½r

? x√½

P

! x√½

@r

In(x,P) = Num of active ?x in P = 1

Out(x,P) = Num of active !x in P = 1

Mix(x,P) = In(x,P)*Out(x,P) = 1

For n such processes:

In(x) = Sum P of In(x,P) = n*1 = n

Out(x) = Sum P of Out(x,P) = n*1 = n

Mix(x) = Sum P of Mix(x,P) = n*1 = n

The global Activity on channel x:

Act(x) = (In(x)*Out(x))-Mix(x) = n2-n 

= n*(n-1)

The global speed on channel x:

speed(x) = rate(x)*Act(x) 

= ½*r*n*(n-1)

In(x,P) = Sum of weights of active ?x in P = √½

Out(x,P) = Sum of weights of active !x in P = √½

Mix(x,P) = In(x,P)*Out(x,P) = ½

For n such processes:

In(x) = Sum P of In(x,P) = n*√½

Out(x) = Sum P of Out(x,P) = n*√½

Mix(x) = Sum P of Mix(x,P) = n*½

The global Activity on channel x:

Act(x) = (In(x)*Out(x))-Mix(x) = 

(n*√½)*(n*√½)-(n*½) = (n2*½)-(n*½) = (n2-n)*½

= n*(n-1)*½

The global speed on channel x:

speed(x) = rate(x)*Act(x) 

= r*n*(n-1)*½

The rate of a channel modeling a 
symmetric reaction must be halved.

The correct rate for a symmetric reaction.
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Appendix
Interleaving NOT
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A() B() C() D()

directive sample 4.0 10000

directive plot AC(); AD(); BC(); B(); D()

let AC() = 

do delay@1.0; BC() 

or delay@2.0; AD()

and AD() = delay@1.0; (B()|D())

and BC() = delay@2.0; (B()|D())

and B() = ()

and D() = ()

run 1000 of AC()

Interleaving NOT

You cannot “run parallel actions by executing their first step in either order” !

@1
A B

@2
C D

1000

1000

1000

1000

@λ;B | @µ;D  ≠ @λ; @µ; (B|D) + @µ; @λ; (B|D)

directive sample 4.0 10000

directive plot A(); B(); C(); D()

let A() = delay@1.0; B()

and B() = ()

let C() = delay@2.0; D()

and D() = ()

run 1000 of (A() | C())

@2

@1

AC
AD

BC @2

@1

1000

333

667

1000

B

D
1000

D
B

A

C

≠
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Appendix
Derivatives for Functional 

Programmers
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The Rate of Change
Differentiation for Functional Programmers (like me)

Derivative is an operator that maps continuous functions to continuous 
functions. It is defined [Newton] as the higher-order function:

derivative = λf. λx. lim(h→0). (f(x+h)-f(x))/h

derivative: (R→R)→(R→R)

f• stands for derivative(f)   (f [Newton], f’ [Lagrange])

sin• = cos              a true fact: the derivative of sin is cos

sin• = λx. cos(x)    a true fact: it is that function that maps x to cos(x)

sin•(x) = cos(x)  an abuse of notation for one of the above 

(first x is binding)

•



2006-05-26 39

L
u
c
a
 C

a
rd

e
lli

The Rate of Change
Differential Equations for Functional Programmers (like me)

A differential equation means find any f such that f• = F (where f may occur in F!)

f• = cos solution: f = sin   (no recursion in definition of f•)

f• = λx. –k·f(x) solutions (for any C):   f = λx. Ce-k·x

d/dx f = -kf common abuse of the above equation 
(x is unapplied on the right! what if not pointwise???)

f = Ce-kx common  abuse of the above solution 
(x is unbound on the right!)

d/dx f(x) = … Proper Liebniz notation, mostly useful for partial differentiation

Pointwise abuse: To make things a bit shorter, we overload arithmetic operators pointwise 
from numbers to number-valued functions (constants are overloaded to constant 
functions) so we can write:

f• = -2f   or f•(x) = -2f(x) (meaning f• = λx. (λy. –2)(x)·f(x))

Note that omitting “(x)” does not always work, e.g. when considering “non-pointwise 
equations”, then the differentiation parameter must be explicit:

f•(x) = -2f(x-1)

Fortunately we don’t have many of such “history-dependant” derivatives.
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The Rate of Change of Concentrations

Therefore, for example:

[P]• = -k[P]

means

X• = -kX

means

(λt. X(t))• = λt. –k·(X(t))

with solution(s) for X:

fC = λt. Ce-kt for each initial concentration C

In general we have a system of differential equations among concentrations:

[A]• = ... [A] ... [B] ... [C] ...

[B]• = ... [A] ... [B] ... [C] ...

[C]• = ... [A] ... [B] ... [C] ...

which may be hard to solve symbolically, in which case we will have to solve it numerically 
(for some specific values of initial concentrations).


