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Communicating Automata



Interacting Automata

hew a@r,
Communication
new b@rz channels
: new c@r,
@A5 E A1 = ?Cl} A2 \
: A, = lc; Ag
A3 = @A5, Al
Bl - @AZ' BZ + IG, B3 §
@ current State BZ i @Al; Bl > §
== P> Delay Wl | =
=== Transition B3 m 7b, BZ °
@9 Interaction
C; = b |C3 + 2 |C
Communicating automata: a graphical FSA-like 1 Il 2 3
notation for “finite state restriction-free m- C I @A3: C1
calculus processes”. Interacting automata do not C3 = @A, i C2 y.
even exchange values on communication.
The stochastic version has rateson A 1 | B ! | Cl } The system and
initial state

communications, and delays.

"Finite state" means: no composition or restriction inside recursion.
Analyzable by standard Markovian techniques, by first computing
the "product automaton” to obtain the underlying finite Markov
transition system. [Buchholz]



Interacting Automata Transition Rules

‘ Delay O

@ current State
=== Delay
=== Transition
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@A [AT] = -A [A] [P]is the number of P's
@ ....... o onta

B1() B2() B3() B4() B5() B6() directive sample 3.0

S 1200 Al() A20) A3() A4() A50) A60) directive plot B1(): B2(); B3(): B4(): B5(): B6():
S A1(): A2(); A3(): A4(): AB(): A6()
X let A1() = delay@1.0; B1() and B1() = ()
001 P(delay<t ) = 1-e*t let A2() = delay@2.0; B2() and B2() = ()
half 8 | i16 let A3() = delay@3.0; B3() and B3() = ()
life =L let A4() = delay@4.0; B4() and B4() = ()
200 1 P(delay>t ) = e let A5() = delay@5.0; B5() and B5() = ()
let A6() = delay@6.0; B6() and B6() = ()
0

0‘_5 1 15 2 2‘.5 3 run 100 of (A1() | A2() | A3() | A4() | AB()| A6())



Choice

| | ] | The only extra law of Strong
@A'C il @ch M @(A"'U)'C Markovian Bisimulation (Lumpability)

@1 1200 AO) ——B()

ettt 1000
@ directive sample 4.0 10000
-.....* 800 directive plot A(); B()
P(min(X,.Y »t
min(X Y1) @1 600 | let A() = do delay@1.0 or delay@1.0

and B() = delay@2.0

400 -
- . run 1000 of (A() | B())
@ 2 0 T T f
EEEEEE® 0 1 2 3 4

P(Z).0t . . . : : L
(@) This is the min of two random variables (i.e. a duration which is

the min of two durations). In the case of exponential
distributions, the min is another exponential distribution.

Decay by two or more processes

A quantity may decay via two or more different processes simultaneously. . . . .
These processes may have different probabilities of occurring, and thus will EXpO nenTIGI d ISTI"I bUTIOHS
occur at different rates with different half-lives. For instance, in the case of l d d h .

two simultaneous decay processes, the decay of the quantity N is given by: are C Ose under cnol ce.

N(t) — NDE—MfE—Azf — NDE—IIM-I-MJE
Hence we can sum the rates



Join

@AB | @u;B z @(A+p); B

2500 —— A0 B() c0 2AC —

directive sample 4.0 10000
directive plot A(); B(); C(); ?AC
new AC@1.0: chan

let A() = do delay@1.0; B() or 2AC
and €() = do delay@®1.0; B() or 2AC
and B() = ()

run 1000 of (A() | ()

1000

ny, 1
....*
1000 Les @
@ @ 1'

Hmm, so what is this B
distribution?

2 0 1 2 3 4 (wait until later)
2500 B() ——D()
2000
@ *
EEEEEER 2000 | e
1500 directive sample 4.0 10000
directive plot B(); D()
1000 + let D() = delay@2.0; B()
and B() = ()
500 |
run 2000 of D()
0 T T T




Idle Loops

,-.‘@1 ‘-.‘@2 B2 is depleted at rate
;‘ j 3 and replenished at
RO o) ZESTTLLY Lo rate 2, hence..
@1 @1

directive sample 6.0 1000

@
S

directive plot A(); B1(); B2(); €()
QI"O let A(Q) = delay@1.0; ()
z @: ...... >0 let B1() = do delay@1.0; B1() or delay@1.0; ()
@1

let B2() = do delay@2.0; B2() or delay@1.0; ()
let €() = do delay@1.0; () or delay@1.0; ()
run 2000 of (A() | B1() | B2() | €())

2500 AQ) BI() B2() O

2000
1500
1000

500




Sequence

directive sample 4.0 10000
directive plot A(); B(); €0

let A() = delay@1.0; B()
and B() = delay@1.0; ()
and €() = ()

run 1000 of A()

@A @u; C = ??
®@1@1,@ w0 —w ;o—
: o | @ |
0@2 O . B

This is the sum of two random variables (i.e. a duration which is
the sum of two durations). In the case of exponential
distributions, the (discrete) sum B is an Erlang distribution.

On the other hand, this means that networks of
exponential distributions can express more (much
more) than just exponential distributions. (Can
densely approximate any probability distribution.)

Exponential distributions are
not closed under sequence.



1200

1000 -
800 -
600 -
400 |
200 |

1200

1000 |
800 -
600 -
400 -
200 -

Unbounded Concurrency

Pl A P Pl e o

AQ B0
0.5 1 1.5 2 25 3 35 4.5
AQ B0 CO DO
D B
o A
0.5 1 1.5 2 25 3 35 4.5

No side effect on A or B.
(E.g. they don't get "slower” because
something else is running!)

directive sample 4.0 10000
directive plot A(); B()

let A() = delay@1.0; B()
and B() = ()

run 1000 of A()

directive sample 4.0 10000
directive plot A(); B(); €(): D()

let A() = delay@1.0; B()
and B() = ()

let €() = delay@2.0; D()
and D() = ()

run 1000 of (AQ) | €0)



In’re.rac’rive Markov Chains. Sec 4.1.2

Asynchronous Interleaving

@AB | @u;D = @A;(B | @u;D) + @u;(@A;B | D)

AQ) B() CO D()

1000 1000 1000 directive sample 4.0 10000
@1 directive plot A(); B(); €(); DO
EEEEEER 800 |
let A() = delay@1.0; B()
600 - and B() = ()
1000 1000
@ ) @2 ' 400 let C() = delay®2.0; D()
200 C A and D() = ()
0 ‘ ‘ ‘ ‘ ‘ ‘ : run 1000 of (A() | €())
0 0.5 1 1.5 2 25 3 35 4

directive sample 4.0 10000
directive plot

?YA; B(): 2YC; DO: Y(); AO: €0)
new YA@1.0:chan new YC@1.0:chan

let AQ) = do delay@1.0; B() or ?vA
and B() = ()

let €() = do delay@2.0; D() or 2vc
and D() = ()

let Y() =
do delay@1.0; (B() | €()

or delay@2.0; (A() | D())
or ?YA or ?YC

N.B. just to talk about this law, we need . , , run 1000 of Y()
move 1o process agebra morger 1o neve  AMazingly, the B's and the D's from the two
states that splt branches sum up to exponential distributions



@A;B | @A;B

Join Again

= @A(B | @AB) + @A(@AB | B)

= @2A;(B | @A;B)

1000

@1

...-...*
1000 L .eW
@1

&"__ﬁ’)@z

lllllll*—

by Choice

0 3
2500 BO DO EQ
2000 - e
1500 |
1000
500 -
0 :
0 3

by Interleaving

directive sample 4.0 10000

directive plot A(); B(); C(); 2AC

new AC@1.0: chan

let A() = do delay@1.0; B() or 2AC
and €() = do delay@1.0; B() or 2AC
and B() = ()

run 1000 of (A() | €0)

directive sample 4.0 10000
directive plot B(); DO EQ

let E() = delay@2.0; (B() | D())
and D() = delay@®1.0; B()
and B() = ()

run 1000 of E()

That only works if the two delays are equal;
in general, by Interleaving:

@AB | @u;B = @A;(B | @u;B) + @u:(@A;B | B)



500

400

300

200

100

3-loop

s1() s2() s3() —

let s1() = delay@1.0; s2()
and s2() = delay@1.0; s3()
and s3() = delay@1.0; s1()

run 1000 of s1()

500

400

300

200

100

directive sample 10.0 1000
directive plot s1(); s2(): s3(): s4();
s5(): s6(): s7(): s8(): s90

let s1() = delay@1.0; s2()

and s2() = delay@1.0; s3()
and s3() = delay@1.0; s4()
and s4() = delay@1.0; s5()
and s5() = delay@1.0; s6()
and s6() = delay@1.0; s7()
and s7() = delay@1.0; s8()
and s8() = delay@1.0; s9()
and s9() = delay@1.0; s1()

run 1000 of s1()
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From Delay to Interaction

Delay Interaction




Examples

directive sample 0.05 1000

1000 directive plot A(); B(): €0

new a@1.0: chan

let AQ) = ?a; B()
@10 and B0 = 0
and €() = la; €()

run (1000 of A() | 100 of C())

100 (* try 1,10,1000 of C() *)

directive sample 0.05 1000
directive plot A(); B()

new a@1.0: chan

2a let AQ) =

do la; A() or delay@1.0; B()
and B() = ?2a; €()
and €)= ()

1000 1000 run (1000 of A() | 1000 of B())

la @10

@10

B's furn into C's much faster than A's furn into B's.
Now we will spend time understanding
why that happens and what it means.

999 a

=]

799.2

5994

3996

1998

0
5.6857e-05 0.062299
Simulation: Tirme = 0062299 (437 points at 0.046362 simTime/sysTime and halted)

Al
399 BO
o That's A
/ where is B?
1]
B.0659e-05 8370 Liwve

Simulation: Time = 8370126 (2011 points at 21007 simTime/ sy

Al
999 Ef)
sse ZOOM A
' /There is Bl
n \
5.0B5%e-05 0.028722 Paused

Simulation: Time = 8370126 (2017 points at 21007 simTime/syvsTime a

Live



The Rate of What?

In chemistry:

- Each reaction involves 2 molecules, and each reaction has a rate.
Rates belongs to reactions. Molecules do not have rates.

In process algebras: Rates belong

- Should rates belong to: o Chann'els
e each individual action? only outputs? delays only? not to actions!

- The rate of a synchronization of two actions should be the:
e max? product? undefined if different? infinite (except for delays)?

- All that has been tried.

We go back to chemistry

- Rates belong to channels. (This is called the "biochemical” 2a
stochastic n-calculus by Priami-Regev-Shapiro-Silverman)
: @A

Issues:

- Multiple activities on the same channel (concentrations of
molecules involved in a reaction: mass action law of chemistry).

- Choices between different channels (molecules involved in
multiple reactions: still standard chemistry).

- Inbiochemistry, rates of homodimerization (a molecule can
interact with a copy of itself, but not with itself).



Chemical Reaction Rates

http://en.wikipedia.org/wiki/Reaction_rate

The reaction rate for a reactant or product ina
particular reaction is defined as the amount (in
moles or mass units) per unit time per unit
volume that is formed or removed.

Reaction rate is often expressed in the units
mol/Ls (where 1 mole is a dimensionless
constant equal to the Avogadro number).

Concentration is mol/L , hence rate is

concentration/s.

One also often sees uM (one millionth of
a mole per /iter). That's a concentration,

hot a mole number.

Volume Mass
Mass of the

For Gases at STP iclas/t =
ot Wothe et g

. %
X

1 Mole % ’

Number

Number l‘:}flﬂbﬂil
6.02 x 107" tam™

{Avogadro's W)



The Concentration of What?

If Pis a process (state), then:

[P]is the function that at time t gives the quantity of P

N.B.; Avogadro’'s number (~6.022x1023) relates concentration to quantity of
molecules. Hence we usually identify concentration=quantity. Remember,
though that increasing quantity then means increasing concentration, not
volume, of solution.

This notion of [P] assumes some way of counting P's, i.e. some way of telling
when two P are equal, i.e. a congruence relation on processes.

A simpler option (and what is actually done in SPiM) is never to count
“processes” but rather o count "offers of communication” that processes
are performing, i.e. active actions (a.k.a. "barbs").

If bisabarb ("?2c" or "Ic") then:

[b] is the function that at time T gives the quantity of b
If we see P as an automaton, this is very easy to arrange: add a barb fo the
“current” state of the automaton corresponding to P (e.g. a unique ?_P that

nobody ever uses). Then we set [P] = [?_P].

We can use barbs to count processes.

[?c].., =2

[lcl., =2
[A]nOW = [?—A]HOW
[B]now = [?_B]nOW

1
2




The Rate of Change of Concentrations

Derivative is an operator that maps continuous functions to continuous functions.
It is defined [Newton] as the higher-order function:

derivative: (R—R)—>(R—R) = Af. Ax. lim(h—0). (f(x+h)-f(x))/h
f* stands for derivative(f) (f. [Newton], f' [Lagrange])
A differential equation

[P]=..

represents the rate of change of the number (a.ka. concentration) of P's over time.
In general we may have a system of differential equations among concentrations:

[A]' = ... [A] ... [B] ... [C] ..

[B]=..[A]..[B]..[C]..
[C]=..[A]..[B]..[C]..

which may be hard to solve symbolically, in which case we will have to solve it numerically
(for some specific values of initial concentrations).



The Law of Mass

The speed of interaction’ is proportional
to the number of possible interactions.

Decay
1000 @A
@. e @ Exponential
Decay law
o®° %0, Rate of change
[D ]. — —A [D] proportional o number

of possible decays.

[E] -A[D]""

Mass interaction
1000

1000 @ A

Ic Mass

Interaction law
Rate of change
proportional to number
of possible interactions

Interaction
Law generalizes
Decay Law

[AT ={-A[A] [B];

[BI"=-A[A][B]
[AB]* = A [A] [B]

T speed of interaction (formally definable)
= number of interactions over time
not proportional to the number of interacting processes!

[P]is the number of processes P (this is informal; it is only
meaningful for a set of processes offering a given action, but
a set of such processes can be counted and plotted)

Interaction

Chemical Law of Mass Action

o http://en.wikipedia.org/wiki/Chemical_kinetics
) f“ The speed of a chemical reaction is
. ‘ proportional to the activity of the
o reacting substances.
a @, | Activity = concentration, for well-
O‘Q N stirred aqueous medium
Q, pa‘ Concentration = number of moles per
*O P liter of solution
F9aY% | Mole = 6.022141x10% particles

It's not an opinion, it's the Law!

D() AL() A2()
— A4() A8()
1000
N SN

decay

400 -

interaction

200 - (much faster!)

0 0.002 0.004 0.006 0.008 0.01

HO\ 10 | B10 | A2()
\ ()\ 4(0) | B40 | A80) | B8()



Activity and Speed

stochastic algebras disagree!

The speed of interaction is proportional

o she mamber of passible memmerions. = 1he activity (= "concentration”) on a channel is the
number of possible interactions on that channel.

directive sample 0.01 10000
directive plot A1(); A2(); A3()

new c1@1.0:chan
| 1 A new c2@1.0:chan
The speed of interaction on a channel, is the now <3@1.0:chan

activity multiplied by the base rate of the channel.

let A1() = ?cl
and B1() = lcl

let A2() = do 2c2 or 2c2
and B2() = Ic2

let A3() = do 2c3 or 2c3
and B3() = do lc3 orlc3

run 1000 of (A1() | B1()
| A2() | B2() | A3() | B3())

AlQ) A2() A3()
c activity: 1 c activity: 2 c activity: 4 1000
speed: A speed: 2A speed: 4A 800 2|l

2c+?c | lc

600 -
The mass interaction law [Buchholz] Other algebras assign rates to actions,

[Priami-Regev-Shapiro-Silverman] is not channels, with speed laws:
compatible with chemistry 2A*2A = 4A? 2007
[Gillespie] and /ncompatible with max(2A,2A) = 2A [Goetz] 0 —
any other stochastic algebra in the min(2A,2A) = 2A [Priami] 0 0002 0004 0006 0008 0.1
literature! (including [Priami]; see 1/(1/(2A)+1/(2A)) = A [PEPA]

[Hermanns]) 2A*1 = 2A (passive inputs)

2c+? Ic+!
100 . 2c+2c | letle




The Strength of Populations

At size 2N, on a shared channel,
uis N Times stronger than A:

interaction easily wins over delay.

A-p fight!
N=10 N=100
A=10 A=100
u=1 p=1

0 0.5 1 0 0.05

T——B80 100 +———B0)
L\\ A ﬁ 50 K.w\ A
0

directive sample 0.01 1000
directive plot B()

val lam = 1000.0
val mu=10

new a@mu:chan
let A() = la; A)
and B() = ?2a; €()
and C() = delay@lam; B()

run 1000 of (A() | BQ)

N=10000

A=10000

=1

EB()}

0 0.0002 0.0004
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The Law of Mixed Interaction

for processes offering both ?a and la actions

The speed of interaction is proportional
to the number of possible interactions.

But a process cannot interact with itself.

Mixed interaction

@A

- Mixed 0 |
Interaction
law

[AT =::2A [A] ([A]-1):

2 Aare
“consumed" for

number of
interactions

AQ B0

directive sample 0.1 10000
directive plot A(); B()

new a@1.0:chan

let A)= do ?aorla

let B() = delay@1.0
run 1000 of (A() | B())

In CCS-style process algebras, not
even [Priami-Regev-Shapiro-
Silverman] or BioSPI have this law
in full generality. It was first
worked out by [Block et al (unpub)],
and only SPIM implements it.

each interaction

Note for later: Hence, if we want use 3 such
processes to model “the 3 possible collisions |
between 3 particles”, then we need to divide 'a
the rate A by 2, because this model gives 6
interactions, not 3, between 3 processes

1 process,

O interactions

2 processes,
2 interactions

3 processes,
6 interactions




Possible Interactions

The speed of interaction is proportional to
the number of possible interactions.

(And a process cannot interact with itself.)

Assume each process P is in restricted-
sum-normal-form. For each channel x:

In(x,P) = Num of active ?x in P
Out(x,P) = Num of active Ix in P
Mix(x,P) = In(x,P)*Out(x,P)

#interactions that cannot happen
in a given summation P

In(x) = Sum P of In(x,P)
Out(x) = Sum P of Out(x,P)
Mix(x) = Sum P of Mix(x,P)

total #interactions that cannot happen

The global Activity on channel x:
Act(x) = (In(x)*Out(x))-Mix(x)

total cross product of inputs and outputs
minus total #interactions that cannot happen

The global speed of interaction ona
channel x:

speed(x) = Act(x)*rate(x)

In(a,A)=2
Out(a,A) =3 A
Mix(a,A) = ‘e

2*3 =6

In(a)=2+2=4
Out(a)=3+1=4 é
Mix(a) = 6+2 =8

In(a,B)=2

Out(a,B)=1

Mix(a,B) =
2*1=2

éForbidden (Mix)
interactions

Act(a) = (In(a) * Out(a)) - Mix(a) =4*4-8=8

speed(a) = Act(a)*rate(a) = 8*rate(a)

This is the SPiM Activity computation.



Symmetric Reactions by Mixed Choice

Consider a reaction
A+B->rC

which has mass action kinetics:

[C] = r[A][B]

[A]" = [B]' = -r[A][B]
because [A][B] is the number of possible collisions.
For [A]=1 and [B]=1 we have speed

r*1*1=p
i.e. two single molecules interact at speed r, as
expected.

Consider now a symmetric reaction
A+A->rC

which has mass action kinetics:

[C] = r[AN([AT-D)3

[A] = -2r[AN([A]-1)z = -r[AN([A]-D)
because [A]([A]-1)3 is the number of possible
collisions (symmeftric interactions) in [A] molecules!
For [A]=1 we have speed

r*1*0*3=0
since a single molecule does not collide.
For [A]=2 we have speed

Pp*2*1*3=r
so two single molecules collide at rate r, as before.
For [A]=3 we have speed=3, since 3 molecules have 3

possible collisions. Etc. For [A]=n we have as reaction
rate (i.e. as C production rate):

r*n*(n-1)*3

If we model symmetric reactions with mixed
choice at rate r, we get the wrong answer:

?X O
A= (P er (PIP>C)

!x

In(x,P)=1, Out(xP)=1
Mix(x,P) = In(x,P)*Out(x,P) =1

For n such processes:

In(x) = SumP of In(xP)=n*1=n
Out(x) = Sum P of Out(xP)=n*1=n
Mix(x) = Sum P of Mix(x,P)=n*1=n

The global Activity on channel x:
Act(x) = (In(x)*Out(x))-Mix(x) = n-n= n*(n-1)

The global speed on channel x:
speed(x) = rate(x)*Act(x) =
r*n*(n-1)
While 1 process has speed=0, as expected,
2 processes have speed=r*2, not r.

We are off by a factor of 2.

The rate of a channel modeling a symmeftric
reaction must be halved. [Shapiro 2001]



Weighted Actions

WeighTed Actions [Buchholz]

?go_faster

@@ "

?go_slower

A.CT|V|1'Y - W Can generalize w o a real number,
(similarly for ?¥c) and to input-bound variables.

T
5
>
&

In general, we can allow real numbers as weights, and use them in the activity computation:

In(x,P) = Sum of weights of active ?x in P
Out(x,P) = Sum of weights of active Ix in P

Exercise: Find a weight w such that the following automata interact at the same apparent rate.
I.e., instead of “fixing" the rate of symmetric reaction, fix the way they are modeled.

?X 2wx

x@3r

Ix lwx




Speed of Symmetric Reactions

Here is a mixed choice interaction directive sample 0.01 10000
representing a symmetric reaction, directive plot A1(); A2(); B(); ?ala2
where the rate has been halved. The B new ala2@1.0:chan

reaction is about as fast as the A

reaction, but it uses only half the new a@1.0:chan

number of processes. new b@0.5:chan

let A1() = do ?a or ?ala2

’)b 1000 and A2() = do la or ?ala2
1000 . O let B()= do ?b or Ib
©0.5 1000
run 1000 of (A1) | A2())
Ib run 1000 of B()

2000 - Al1() A2() B() ?ala2 -

1800

1600 -

1400 -

1200 -

1000

800

600 -

400 | Cf.: homodimerization

200 | (symmetric complexation) is

0 pervasive in biochemistry.

0.002 0.004 0.006 0.008 .01

[Ai]. = _1-0*[A1]*[A2] missing + factor

because computed
2*B consumed in each reaction by the wrong mixed

[B] = -2%(L.OF2)*[BT*([B]-1)
= -1.O*[B]*([B]-1)



Summary

e Delay Automata
- Governed by the exponential decay law

e Interacting Automata
- Governed by the mass action law
- Be careful about symmetric interactions

e The Law of Mass Interaction

- The speed of interaction is proportional
to the number of possible interactions

- Summarizes all of the above
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Symmetric Reactions with Weighted Actions

The rate of a channel modeling a Or else we can use the right mixed
symmetric reaction must be halved. choice model, via weighted actions!
X 2 x

@3r

Ix !\/% X
In(x,P) = Num of active ?x inP =1 In(x,P) = Sum of weights of active ?x inP = V%
Out(x,P) = Num of active Ix inP =1 Out(x,P) = Sum of weights of active Ix inP =V}

Mix(xP) = In(x,P)*Out(x,P) =1
For n such processes:

In(x) = Sum P of In(xP)=n*1=n

Out(x) = Sum P of Out(x,P)=n*1=n

Mix(x) = Sum P of Mix(x,P)=n*1=n

The global Activity on channel x:

Act(x) = (In(x)*Out(x))-Mix(x) = n-n

= n*(n-1)

The global speed on channel x:
speed(x) = rate(x)*Act(x)

= $*r*n*(n-1)

Mix(x,P) = In(x,P)*Out(x,P) = +
For n such processes:

In(x) = Sum P of In(x,P) = n*V3
Out(x) = Sum P of Out(x,P) = n*V%
Mix(x) = Sum P of Mix(xP) = n*3

The global Activity on channel x:

Act(x) = (In(x)*Out(x))-Mix(x) =
(MVE*(*V3)-(n*3) = (n?*3)-(n*3) = (n2-n)*3
= n*(n-1)*%

The global speed on channel x:
speed(x) = rate(x)*Act(x)

= r*n*(n-1)*3

The correct rate for a symmetric reaction.
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Interleaving NOT

You cannot " run paralle/ actions by executing their first step in either order’ |

@AB | @u,D # @A, @u; (B|D) + @u; @A; (B|D)

1000 @ 1 1000

1200

1000 |
800 |
600 |
400 |

200

12C

AQ

B0

€O

DO —

1000 -

800 -

600 -

400 -

200 -

AC(O

AC

AD()

BC

AD

BC()

B0

DO

directive sample 4.0 10000
directive plot A(); B(); €(); DO

let A() = delay@1.0; B()
and B() = ()

let C() = delay@2.0; D()
and D() = ()

run 1000 of (A() | €())

directive sample 4.0 10000
directive plot AC(); AD(); BC(): B(): DO

let AC() =

do delay@1.0; BC()

or delay@2.0; AD()
and AD() = delay@1.0; (B()|D())
and BC() = delay@2.0; (B)ID())
and B() = ()
and D() = ()

run 1000 of AC()



Appendix
Derivatives for Functional
Programmers



The Rate of Change

Differentiation for Functional Programmers (like me)

Derivative is an operator that maps continuous functions to continuous
functions. It is defined [Newton] as the higher-order function:

derivative = Af. Ax. lim(h—0). (f(x+h)-f(x))/h
derivative: (R—R)—(R—R)
f* stands for derivative(f) (12 [Newton], f' [Lagrange])
sin® = cos a true fact: the derivative of sin is cos
sin® = Ax. cos(x)  a true fact: it is that function that maps x to cos(x)

sin*(x) = cos(x) an abuse of notation for one of the above
(first x is binding)



The Rate of Change

Differential Equations for Functional Programmers (like me)
A differential equation means find any f such that f* = F (where f may occur in F!)

f* = cos solution: f = sin (ho recursion in definition of f*)
fe = Ax. -k-f(x)  solutions (for any C): f = Ax. Ce™*X

d/dx f = -kf common abuse of the above equation
(x is unapplied on the right! what if not pointwise???)
f = Cekx common abuse of the above solution
(x is unbound on the right!)
d/dx f(x) = ... Proper Liebniz notation, mostly useful for partial differentiation

Pointwise abuse: To make things a bit shorter, we overload arithmetic operators pointwise
from numbers to number-valued functions (constants are overloaded to constant
functions) so we can write:

fo=2fF  or fx) = -2f(x) (meaning f* = Ax. (Ay. -2)(x)-f(x))

Note that omitting "(x)" does not always work, e.g. when considering "non-pointwise
equations”, then the differentiation parameter must be explicit:

fo(x) = -2f(x-1)

Fortunately we don't have many of such “history-dependant” derivatives.



The Rate of Change of Concentrations

Therefore, for example:

[P1* = -k[P]
means

X* = -kX
means

(M. X())* = At -k-(X(T))
with solution(s) for X:
fc = At. Ce®  for each initial concentration C

In general we have a system of differential equations among concentrations:

[A]' = ... [A] ... [B] ... [C]..

[B]*=.. [A]...[B]..[C]..
[C]=..[A]..[B]..[C]..

which may be hard to solve symbolically, in which case we will have to solve it numerically
(for some specific values of initial concentrations).



