Biochemical Algorithms

Luca Cardelli, Microsoft Research \& Oxford University
related work: Attila Csikász-Nagy, Neil Dalchau, Mirco Tribastone, Max Tschaikowski, Andrea Vandin

IMT Lucca, 2017-03-30

Introduction

Cellular Computation

- No survival without computation!
- Finding food
- Avoiding predators
- How do cells compute?
- Clearly doing "information processing"
-What are their computational principles?
-What are their algorithms?

More concretely

- Give substance to the claim that "cells compute"
- Yes, but what do they compute?
- Catch nature red-handed in the act
 of running a computational task
- Something that a computer scientist would recognize as an algorithm

Reality is Complicated

- Every biochemical species that we may just call "X" is actually a sophisticated machine that has evolved for billions of years

Structures of the cyanobacterial circadian oscillator frozen in a fully assembled state

Friedrich Förster, ${ }^{2}{ }^{2}$, Albert J. 2. . Heck'§

Structural basis of the day-night
transition in a bacterial
circadian clock
Roger Teeng,
Susan E.
Son

Biochemical Networks

Abstract Machines of Biochemistry

Regulation

Hold receptors,

Metabolism, Propulsion Signaling, Transport

Surface and Extracellular Features

Bioinformatics View (Data Structures)

Systems Biology View (Networks)

Algorithmic View (Languages)

Network Evolution

Across species: Ortholog genes

Within species: Paralog genes

Influence Networks

How to model "Influence"

"True" molecular interactions.

Figure 3: a) Schematic diagram of a simplified SIMM model [17]. The activa-

"Equivalent" influence interactions.

Figure 4: a) Schematic diagram of a primitive cell cycle in the reinitz framework.

Chemical Reaction Network \longleftrightarrow Influence Network

Evolving a Primitive Eukaryotic Cell Cycle Model
Malte Lücken, Jotun Hein, Bela Novak

Instead of modeling basic interactions, such as binding, synthesis, and degradation of molecular components, this framework models interactions simply as activation or inhibition. This approach also reduces the number of nodes necessary in the network, as e.g. the inhibitor binding tightly to the activator to form a complex, which produces phosphorylated inhibitor to be degraded under catalysis by the activator, is now simply a double negative feedback loop shown in Figure 1. This type of interaction is the basis of both aforementioned molecular model, therefore they can both be summarized in a single Reinitz model.

The Reinitz Model of Influence

- Based on early connectionist (neural network) modeling
- Each activation/inhibition interaction is modeled as a flexible sigmoid function with 4+ parameters per node

inhibition
- We prefer to stick to mass action kinetics - It will later become clear why
- We model activation/inhibition nodes by a mass action motif:
- Using 4 rate parameters per node
- Akin to multisite modification

The Triplet Model of Influence

biological mechanism: (e.g.:) multisite phosphorylation
inhibit x

triplet motif
We model them by
4 mass action reactions over
3 species x_{0}, x_{1}, x_{2}
They actually implement a
Hill function of coefficient 2:

For example:

Approximate Majority

The Triplet Model of Influence inhbition

- Solving this mass action model at steady state with tot $=x_{0}+x_{1}+x_{2}$, obtain x_{0} as a function of a and i :

$$
x_{0}=\frac{k_{10} k_{21} \text { tot } a^{2}}{k_{10} k_{21} a^{2}+k_{01} k_{21} a i+k_{01} k_{12} i^{2}}
$$

- Assuming $i=$ tot $-a$ (inhibition decreases as activation increases) obtain x_{0} as a function of $a \in[0 .$. tot $] \quad$ (max stimulus $=$ max response)

$$
x_{0}=\frac{k_{10} k_{21} \operatorname{tot} a^{2}}{\left(k_{10} k_{21}-k_{01} k_{21}+k_{01} k_{12}\right) a^{2}+\left(k_{01} k_{21}-2 k_{01} k_{12}\right) \operatorname{tot} a+k_{01} k_{12} t^{2} t^{2}}
$$

- By regulating the rates of flow through x_{1} within 2 orders of magnitude we can obtain a range of linear, hyperbolic and sigmoid responses in the range [0.1] to linear activation $a \in[0.11]$.

Influence Network Notation

-Catalytic reaction $x \xrightarrow{\text { d }} y=x \xrightarrow{\underbrace{z}} y \quad \begin{gathered}z \text { is the catalyst } \\ x+z \rightarrow z+y\end{gathered}$

- Triplet motif

Influence Network Duality

- Let $\sim x$ be the species such that

$$
(\sim x)_{0}=x_{2}, \quad(\sim x)_{1}=x_{1}, \quad\left(\sim x_{2}=x_{0}\right.
$$

so that promoting x is the same as inhibiting $\sim x$ etc. Then:

Network model

- Influence networks
- Influence species: two main molecular states (high/low or modified/unmodified)
- High-low transitions are nonlinear (e.g. sigmoidal)
- Transition kinetics may vary (but we fix one uniformly)

Nodes

Ex.: a cell cycle switch model

$\mathrm{G}_{2} / \mathrm{M}$ Transition

- Very much like gene regulatory networks, but with the extra option of the "unmodified" state being active too

Consensus Networks

A Consensus Problem

- Population Consensus

- Given two populations of x and y "agents"
- We want them to "reach consensus"
- By converting all agents to x or to y depending on which population was in majority initially
- Population Protocols Model

specification

$X, Y:=X+Y, 0$ if $X_{0} \geq Y_{0}$
$X, Y:=0, X+Y$ if $Y_{0} \geq X_{0}$

- Finite-state identity-free agents (molecules) interact in randomly chosen pairs (\Rightarrow stochastic symmetry breaking)
- Each interaction (collision) can result in state changes
- Complete connectivity, no centralized control (well-mixed solution)

A Consensus Algorithm

- Approximate Majority (AM) Algorithm
- Uses a third "undecided" population b
- Disagreements cause agents to become undecided
- Undecided agents agree with any non-undecided agent

Dana Angluin - James Aspnes • David Eisenstat
A Simple Population Protocol for Fast Robust Approximate Majority
catalysis -o

$$
x+y \rightarrow^{r} y+b
$$

chemical reaction

$$
y+x \rightarrow^{r} x+b
$$

network

$$
b+x \rightarrow^{r} x+x
$$

$$
b+y \rightarrow^{r} y+y
$$

Consensus Algorithms

A Biological Implementation

Approximate Majority (AM)

1) Bistable

Even when initially $x=y$ (stochastically)
2) Fast (asymptotically optimal) O(log n) convergence time
3) Robust to perturbation above a threshold, initial majority wins whp

Dana Angluin - James Aspnes • David Eisensta
A Simple Population Protocol for Fast Robust Approximate Majority

Epigenetic Switch

Silenced
I inioniounjobl

Figure 1. Basic Ingredients of the Model
Theory
Theoretical Analysis of Epigenetic Cell Memory by Nucleosome Modification

Not always that simple

- The epigenetic switch seems a direct biological implementation of an algorithm
- Although we may have to qualify that with some notion of approximation of the (enzymatic) kinetics
- In most cases the biological implementation seems more indirect or obfuscated
- "Nature is subtle but not malicious - Einstein" Ha! think again!
- Other implementations of Approximate Majority seem more convoluted and approximate

Antagonistic Networks

Antagonistic Networks

- Let's generalize:
- AM is based on antagonism between two species (inside the triplet)
- So (essentially) are many standard biological networks
- Are they somehow related?
- We could try the same empirical analysis as for CC/AM
- But we can do better

Mutual Inhibition (1 vs. 1)

- "All" cellular switches in all phases of the cell cycle follow (abstractly) a mutual inhibition pattern:

Molecular mechanisms creating bistable switches at cell cycle transitions
Anael Verdugo, P. K. Vinod, John J. Tyson and Bela Novak
Open Biol. 2013 3, 120179, published 13 March 2013

- Also found in other areas (cell polarity establishment):

response

MI

cf.:

Septation Initiation (1 vs. 1)

- Other (inherently different) biological networks are based on mutual inhibition, and share characteristics with AM

SIN inhibiting Byr4, absence of SIN promoting Byr4 Byr4 inhibiting SIN, absence of Byr4 promoting SIN

Delta-Notch (2 vs. 2)

- A mutual inhibition pattern
- Involving two species in each cell
- In two cells a,b
- $\mathrm{D}_{\mathrm{a}}, \mathrm{N}_{\mathrm{b}}$ antagonize $\mathrm{D}_{\mathrm{b}}, \mathrm{N}_{\mathrm{a}}$

Lateral Inhibition through Delta-Notch Signaling: A Piecewise Affine Hybrid Model ${ }^{\star}$

Ronojoy Ghosh and Claire J. Tomlin
M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, pp. 232 -246 2001.
(©) Springer-Verlag Berlin Heidelberg 2001 © springer-verlag Berlin Heidelberg 2001

Antagonistic Networks

Antagonistic Networks

activation
inhibition $\boldsymbol{-}$

The Cell Cycle Switch

Decisions, decisions...

- The AM algorithm has ideal properties for settling a population into one of two states
- Seems like this would be useful in Biology
- Can we find biological implementations of this algorithm?
- Could it be related to the cell cycle switch?

The Cell Cycle Switch

Universal control mechanism regulating

 onset of M-phasePaul Nurse

- This basic network is universal in Eukaryotes [P. Nurse]
- The switching function and the basic network is the same from yeast to us.
- In particular detail, in frog eggs, G_{2} / M transition:

Double positive feedback on x Double negative feedback on x No feedback on y . Why ???

Numerical analysis of a comprehensive model of M -phase control in Xenopus oocyte extracts and intact embryos

Bela Novak and John J. Tyson ${ }^{\dagger}$

- The function is very well-studied. But why this network structure?
- That is, why this peculiar algorithm?

How to Build a Good Switch

-What is a "good" switch?

- We need first a bistable system: one that has two distinct and stable states. I.e., given any initial state the system must settle into one of two states
- The settling must be fast (not get stuck in the middle for too long) and robust (must not spontaneously switch back)
- Finally, we need to be able to flip the switch by external inputs
- "Population protocol" switches
- Identical agents ('molecules') in a population start in some state, say x or y
- A pair of agents is chosen randomly at each step, they interact ('collide') and change state
- The whole population must eventually agree on a majority value (all-x or all-y) with probability 1

A Bad Algorithm

- Direct Competition

catalysis -o

- x catalyzes the transformation of y into x
- y catalyzes the transformation of x into y
- when all-x or all-y, it stops

$$
\begin{aligned}
& y+x \rightarrow x+x \\
& x+y \rightarrow y+y
\end{aligned}
$$

- This system has two end states, but
- Convergence to an end state is slow (a random walk)
- Any perturbation of an end state can start a random walk to the other end state (hence not really bistable)

A Good Algorithm

- Approximate Majority (AM)
- Third, undecided, state b
- Disagreements cause agents to become undecided
- Undecided agents believe any non-undecided agent
- With high probability, for n agents
- The total number of interactions before converging is $O(n \log n)$ \Rightarrow fast (optimal)
- The final outcome is correct if the initial disparity is $\omega(\operatorname{sqrt}(n) \log n)$ \Rightarrow solution states are robust to perturbations
- Logarithmic time bound in parallel time
- Parallel time is the number of steps divided by the number of agents
- In parallel time the algorithm converges with high probability in $O(\log n)$

Dana Angluin • James Aspnes • David Eisenstat
A Simple Population Protocol for Fast Robust
Approximate Majority

An "Ugly" Algorithm: Cell Cycle Switch

- Is it a good algorithm? Is it bad?
- Is it optimal or suboptimal?

```
M
```

Numerical analysis of a comprehensive model of M-phase control in
Xenopus oocyte extracts and intact embryos

Convergence Analysis - CONSENSUS

- Switches as computational systems ccoomegess inologn) time (lie and

Black lines: several stochastic simulation traces
Color: full probability distribution of small-size system

Steady State Analysis - SWITCH

- Switches as dynamical systems

Black lines: deterministic ODE bifurcation diagrams
Red lines: noisy stochastic simulations
Color: full probability distribution of small-size system

A Bug in the Algorithm

Why is CC worse than AM?

- The classical CC has an algorithmic "bug"
- It works ok but never as well as AM
- Because s continuously inhibits x through z, so that x cannot fully express

- So let's fix the bug!
- Easy: let x inhibit s and t"in retaliation"
- Q: Why didn't nature fix it?

The corresponding cell cycle oscillator is also depressed

Nature fixed it!

- There is another known feedback loop
- By which x suppresses s "in retaliation" via the so-called Greatwall loop
- Also, s and t happen to be the same molecule (=s)

Full activation!

- s and x now are antagonists: they are the two halves of the switch, mutually inhibiting each other (through intermediaries).

More surprisingly

- The fix makes it faster too!
- The extra feedback also speeds up the decision time of the switch, making it about as good as the 'optimal' AM switch:

Conclusion:

Nature is trying as hard as it can to implement an AM-class algorithm!

The "classical" cell cycle switch is only half of the picture: the extra feedback completes it algorithmically.

The Greatwall Loop

- Our paper appeared, suggesting GW is a better cell cycle switch than CC:

SCIENTIFIC REPRTS

The Cell Cycle Switch Computes Approximate Majority

- Another paper appeared that same week:

Showing experimentally that the Greatwall loop is a necessary component of the switch.
The not-as-good-as-AM network has been 'refuted'

More Recent Developments

The basic "revised" Cell Cycle Switch

This is an AM-class algorithm (identical performance)

New Cell Cycle Switch Network

- A recent paper presents a more complete view of the cell cycle switch
- N.B. "phosphorylation network dynamics" here is the same as our $x_{0}-x_{1}-x_{2}$ motif

Phosphorylation network dynamics in the control of cell cycle transitions

Mutual inhibition between three species each

Molecular Implementation of AM

- We produced a chemical implementation of AM using DNA gates
- I.e., a 'synthetic reimplementation' of the central cell-cycle switch.

nature nanotechnology

nature.com $\stackrel{\text { - journal }}{ }$ home > archive $>$ issue > article - abstrac
ARTICLE PREVIEW
view full access options
NATURE NANOTECHNOLOGY | ARTICLE
Programmable chemical controllers made from DNA

Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David Soloveichik \& Georg Seelig

Network Equivalences

What we learned

- The network structure of AM implements an input-driven switching function (in addition to the known majority function).
- The network structure of CC/GW implements a input-less majority function (in addition to the known switching function).
- The behavior of AM and CC/GW in isolation are related.
- The behavior of AM and CC/GW in oscillator contexts are related.
- A refinement (GW) of the core CC network, known to occur in nature, improves its switching performance and brings it in line with AM performance.

Can we make this precise?

- Our evidence for computational content of biochemical networks is so far
- Quantitative, covering both kinetic and steady state behavior of what networks do
- But empirical (based on simulations/numerical solutions)
- And it does not yet explain how the CC/GW network relates to the AM network, that is, how each piece of CC/GW corresponds to each piece of AM
- Analytical evidence is harder to obtain
- The proofs of the computational properties (optimality etc.) for the AM algorithm are hard and do not generalize easily to more complex networks
- Quantitative theories of behavioral equivalence and behavioral approximation, e.g. in process algebra, are still lacking (although rich qualitative theories exist)
- How exactly is CC (or CCr, GW, etc.) the "same" as AM?

Network Emulation CCr emulates AM

- For any rates and initial conditions of AM, we can find some rates and initial conditions of CCr such that the (9) trajectories of CCr retrace those (3) of AM:

(9 species on 3 trajectories)

initialize:
$z=x$
$\sim y=x$
$\left(y_{2}=x_{0}\right.$
$y_{1}=x_{1}$
$\left.y_{0}=x_{0}\right)$
- How do we find these matching parameters? By a network morphism!

Network Emulation: MI emulates AM

A mapping of species and reactions

Network Emulation: SI emulates AM

A mapping of species and reactions

How to find emulations

- How do we check a potential mapping for all possible initial conditions of the target?
- Statically! Check conditions on the joint stoichiometric matrices of the two networks under the mapping.
- How do we check a potential emulation morphism for all possible rates of the target?
- Can't; but if one emulation is found, then the rates of the target network can be changed arbitrarily and a related emulation will again exist.

Morphisms of reaction networks that couple structure to function

Applications of Emulation

- Model Reduction

- Find reduced networks
- Compute quotient CRNs
- Find network symmetries that may be of biological interest
- Morphism Generation
- Find morphisms between networks (e.g. all the ones for a fixed rate assignment)

Original model			Forward reduction				Backward reduction			
Id	$\|R\|$	${ }^{-1 S}{ }^{\text {² }}$	Red.(s)	$\|R\|$	$\|S\|$	Speed-up	Red.(s)	$\|R\|$	$\|S\|$	Speed-up
M1	3538944	262146	$4.61 \mathrm{E}+4$	990	222	-	$7.65 \mathrm{E}+4$	2708	222	
M2	786432 :	65538	$1.92 \mathrm{E}+3$	720	167	-	$3.68 \mathrm{E}+3$	1950	167	-
M3	172032:	16386	$8.15 \mathrm{E}+1$	504	122	$1.16 \mathrm{E}+3$	$1.77 \mathrm{E}+2$	1348	122	$5.34 \mathrm{E}+2$
M4	48	18	$1.00 \mathrm{E}-3$	24	12	$1.00 \mathrm{E}+0$	$2.00 \mathrm{E}-3$	45	12	1.00E+0
M5	194054 :	14531	$3.72 \mathrm{E}+1$	142165	10855	$1.03 \mathrm{E}+0$	$1.32 \mathrm{E}+3$	93033	6634	1.03E+0
M6	187468:	10734	$3.07 \mathrm{E}+1$	57508	3744	$1.92 \mathrm{E}+1$	$2.71 \mathrm{E}+2$	144473	5575	$3.53 \mathrm{E}+0$
M7	32776	2506	$1.26 \mathrm{E}+0$	16481	1281	$6.23 \mathrm{E}+0$	$1.66 \mathrm{E}+1$	32776	2506	x
M8	41233 :	2562	$1.12 \mathrm{E}+0$	33075	1897	$1.12 \mathrm{E}+0$	$1.89 \mathrm{E}+1$	41233 :	2562	x
M9	5033 :	471	$1.91 \mathrm{E}-1$	4068	345	$1.04 \mathrm{E}+0$	$4.35 \mathrm{E}-1$	5033	471	x
M10	5797:	796	$1.61 \mathrm{E}-1$	4210	503	$1.47 \mathrm{E}+0$	$7.37 \mathrm{E}-1$	5797	796	x
M11	5832 :	730	$3.89 \mathrm{E}-1$	1296	217	$1.32 \mathrm{E}+1$	$6.00 \mathrm{E}-1$	2434	217	7.55E+0
M12	487:	85	$2.00 \mathrm{E}-3$	264	56	$1.88 \mathrm{E}+0$	$6.00 \mathrm{E}-3$	426	56	1.31E+0
M13	24	18	$1.20 \mathrm{E}-2$	24	18	x	$7.00 \mathrm{E}-3$			$1.00 \mathrm{E}+0$
Aggregation Emulation										
reduction										

Forward and Backward Bisimulations for Chemical

 Reaction Networks

Concur 2015

Satisfiability Modulo Differential Equivalence Relations
Microoff Reeana Cardelli

POPL 2016
Comparing Chemical Reaction Networks: A Categorical and Algorithmic Perspective

LICS 2016

Network Evolution and Network Robustness

Walks in Network Space

Walks in Network Space

Walks in Network Space

Another
 Zoo

Network Perturbations

Network

A complex but robust implementation of the simple network

Normal Behavior

never dead "on average

Conclusion

Networks are Algorithms

- They are methods for achieving a function
- We need to understand how these methods relate to each other
- In addition to how and how well they implement function
- Algorithms can be obfuscated, and nature can obfuscate networks (to what end?)
- Network emulation can be checked statically
- By stoichiometric/reaction-rate (structural) properties
- That is, no need to compare ODE (functional) properties
- For any initial conditions and rates of (one of) the networks
- We can efficiently discover emulations
- Automatic model reduction of large networks

Nature likes good algorithms

The cell cycle switch can exactly emulate AM

What Contributes to Complexity?

- Indifference?
- Robustness?
- Adaptability?
- Noise resistance?
- Temperature compensation?
- Etc.

