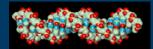

Molecular Programming The systematic manipulation of matter Luca Cardelli

Microsoft Research

University of Sussex, 2015-04-17



Objectives

- The promises of Molecular Programming:
 - · In Science & Medicine
 - \cdot In Engineering
 - \cdot In Computing

- The current practice of Molecular Programming
 - · DNA technology
 - Molecular languages and tools
 - Example of a molecular algorithm

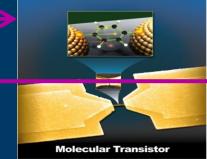
The Hardware Argument Smaller and smaller things can be built

Smaller and Smaller

First working transistor John Bardeen and Walter Brattain , Dec. 23, 1947

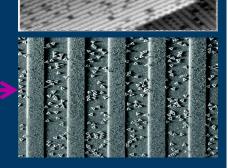
First integrated circuit Jack Kilby, Sep. 1958.

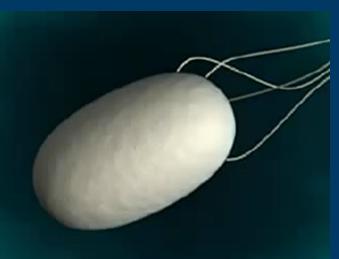
50 years later


25nm NAND flash Intel&Micron, Jan. 2010. ~50atoms


Single molecule transistor Observation of molecular orbital gating *Nature*, 2009; 462 (7276): 1039

Molecules on a chip

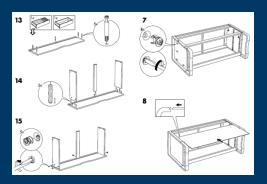

~10 Moore's Law cycles left!


Scanning tunneling microscope image of a silicon surface showing 10nm is ~20 atoms across

Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nature Nanotechnology 4, 557 - 561 (2009).

Building the Smallest Things

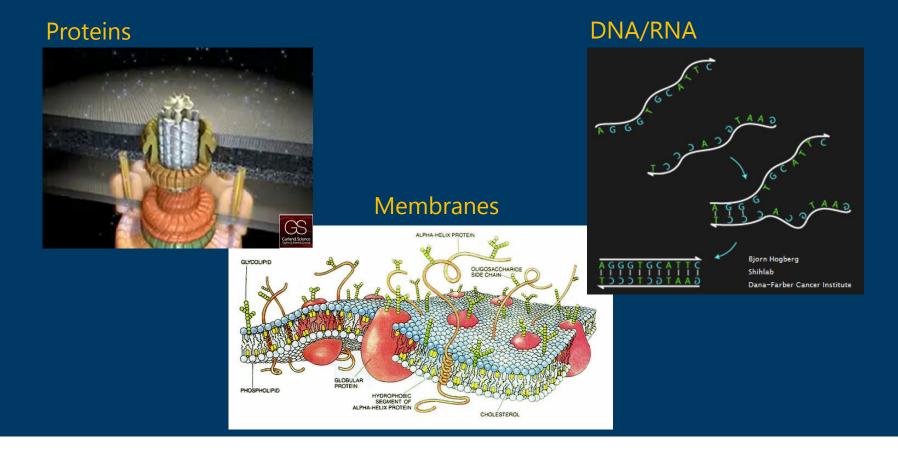
- How do we build structures that are by definition smaller than your tools?
- Basic answer: you can't. Structures (and tools) should build themselves!
- By programmed self-assembly



www.youtube.com/watch?v=Ey7Emmddf7Y

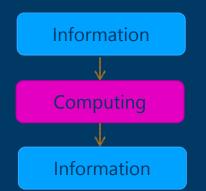
Molecular IKEA

- Nature can self-assemble.
 Can we?
- "Dear IKEA, please send me a chest of drawers that assembles itself."
- We need a magical material where the pieces are pre-programmed to fit into to each other.
- At the molecular scale many such materials exist...



http://www.ikea.com/ms/en_US/customer_ser vice/assembly_instructions.html

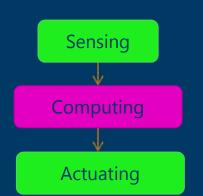
Programmed Self-Assembly


The Software Argument

Smaller and smaller things can be programmed

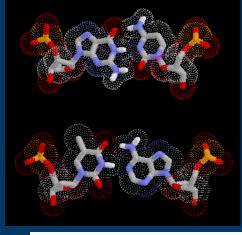
We can program...

- Information
 - · Completely!

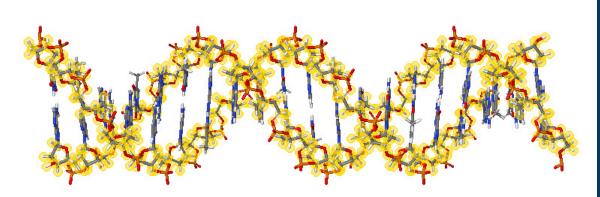


We can program...

• Forces

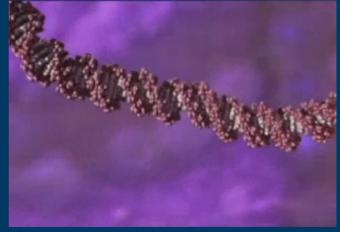

 Completely! (Modulo sensors/actuators)

We can program... • Matter Sensing · Completely and directly! Computing · Currently: only DNA/RNA. Constructing Actuating It's like a 3D printer without the printer! [Andrew Hellington]


DNA

GC Base Pair Guanine-Cytosine

TA Base Pair Thymine-Adenine

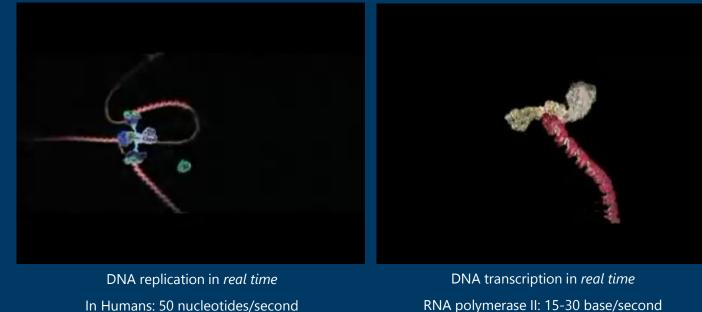


Interactive DNA Tutorial (http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

Sequence of Base Pairs (GACT alphabet)

• DNA in each human cell:

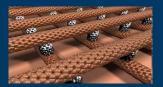
- - 3 billion base pairs
 - 2 meters long, 2nm thick
 - · folded into a 6μm ball
 - 750 MegaBytes
- A huge amount for a cell
 - Every time a cell replicates it has to copy 2 meters of DNA reliably.
 - To get a feeling for the scale disparity, compute:
- DNA in human body
 - 10 trillion cells
 - · 133 Astronomical Units long
 - 7.5 OctaBytes
- DNA in human population • 20 million light years long

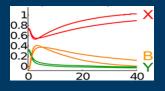

DNA wrapping into chromosomes

Andromeda Galaxy 2.5 million light years

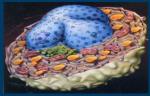
Zipping Along

• DNA can support structural and computational complexity.

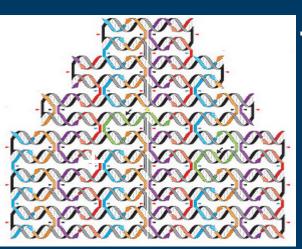

In Humans: 50 nucleotides/second Whole genome in a few hours (with parallel processing)

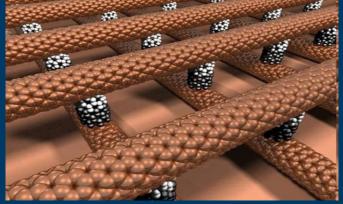

> In Bacteria: 1000 nucleotides/second (higher error rate)

Drew Berry http://www.wehi.edu.au/wehi-tv


What can we do with "just" DNA?

- Organize ANY matter [caveats apply]
- Execute ANY kinetics [caveats: up to time scaling]
- Build Nano-Control Devices
- Interface to Biology




H.Lodish & al. Molecular Cell Biology 4th ed

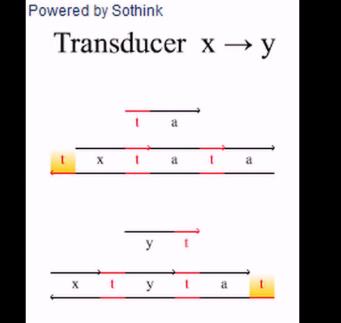
Organizing Any Matter

- Use one kind of programmable matter (e.g. DNA).
- To organize (almost) ANY matter through it.

6 nm grid of individually addressable DNA pixels

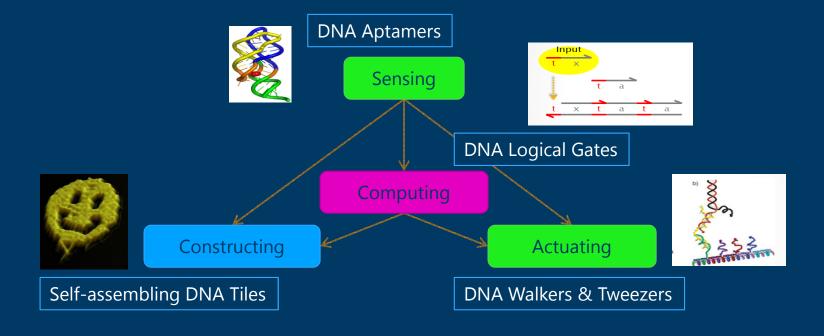
European Nanoelectronics Initiative Advisory Council

"What we are really making are tiny DNA circuit boards that will be used to assemble other components." *Greg Wallraff, IBM*

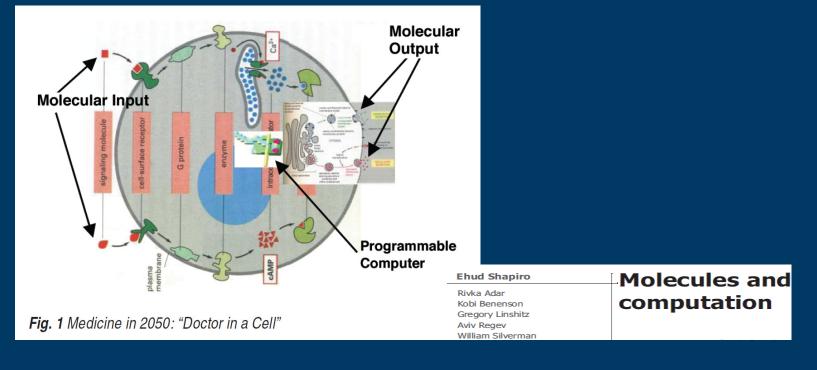

PWK Rothemund, Nature 440, 297 (2006)

Executing Any Kinetics

- The kinetics of any finite network of chemical reactions, can be implemented (physically) with especially programmed DNA molecules.
- Chemical reactions as an executable programming language for dynamical systems!

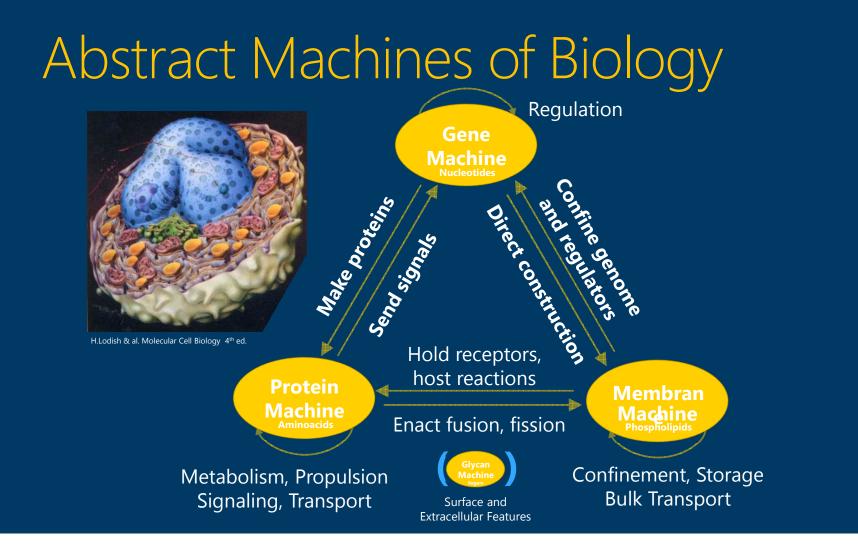

DNA as a universal substrate for chemical kinetics <u>PNAS</u>

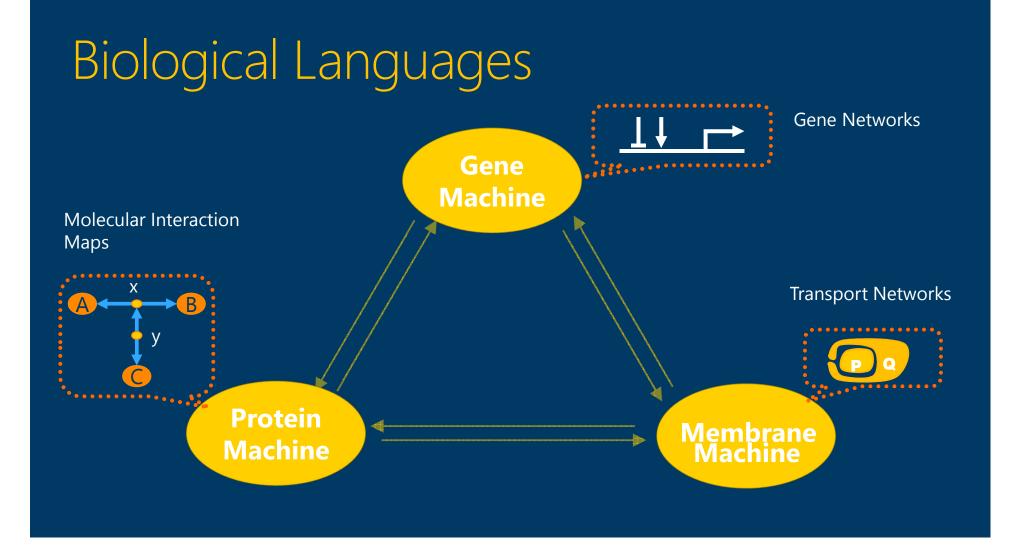
David Soloveichik^{1,1}, Georg Seelig^{1,b,1}, and Erik Winfree^{1,1}



Building Nano-Control Devices

• All the components of nanocontrollers can already be built entirerly and solely with DNA, and interfaced to the environment





The Biological Argument

Biological systems are already 'molecularly programmed'

But ...

• Biology is programmable, but (mostly) not by us!

• Still work in progress:

- · Gene networks are being programmed in synthetic biology, but using existing 'parts'
- Protein networks are a good candidate, but we cannot yet effectively design proteins
- Transport networks are being looked at for programming microfluidic devices manipulating vesicles

Molecular Languages

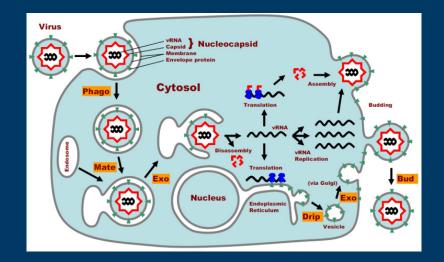
... that we can execute

Action Plan

- Building a full software/hardware pipeline for a new fundamental technology
 - Mathematical Foundations
 - Programming Languages
 - \cdot Analytical Methods and Tools
 - Device Architecture and Manufacturing
- [~ concurrency theory in the 80's]
- [~ software engineering in the 70's]
- [~ formal methods in the 90's]
- [~ electronics in the 60's]
- To realize the potential of Molecular Programming
- "With no alien technology" [David Soloveichik]
- This is largely a 'software problem' even when working on device design

Towards High(er)-Level Languages

Gene Networks


- Synchronous Boolean networks
 - Stewart Kauffman, etc.
- Asynchronous Boolean networks
 - · René Thomas, etc.

Protein Networks

- Process Algebra (stochastic π-calculus etc.)
 Priami, Regev-Shapiro, etc.
- Graph Rewriting (kappa, BioNetGen etc.)
 - Danos-Laneve, Fontana & al., etc.

Membrane Networks

- Membrane Computing • Gheorghe Păun, etc.
- Brane Calculi
 - Luca Cardelli, etc.
- Waiting for an architecture to run on...

Our Assembly Language: Chemistry

- A Lingua Franca between Biology, Dynamical Systems, and Concurrent Languages
- Chemical Reaction Networks • $A + B \rightarrow_r C + D$ (the program)
- Ordinary Differential Equations
 d[A]/dt = -r[A][B] ... (the behavior)
- Rich analytical techniques based on Calculus
- But prone to combinatorial explosion
 E.g., due to the peculiarities of protein interactions

How do we "run" Chemistry?

- Chemistry is not easily executable
 - "Please Mr Chemist, execute me this bunch of reactions that I just made up"
- Most molecular languages are not executable
 They are descriptive (modeling) languages
- How can we execute molecular languages?
 - \cdot With real molecules?
 - That we can design ourselves?
 - \cdot And that we can buy on the web?

Molecular Programming with DNA

Building the cores of programmable molecular controllers

The role of DNA Computing

Non-goals

- \cdot Not to solve NP-complete problems with large vats of DNA
- \cdot Not to replace silicon
- Bootstrapping a carbon-based technology
 - To precisely control the organization and dynamics of matter and information at the molecular level
 - \cdot DNA is our engineering material
 - · Its biological origin is "accidental" (but convenient)
 - · It is an information-bearing programmable material
 - \cdot Other such materials will be (are being) developed

Domains

Subsequences on a DNA strand are called domains
 provided they are "independent" of each other

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

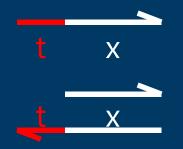
oriented DNA

single strand

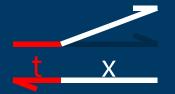
- x y z single stand
 Differently named domains must not hybridize
 - With each other, with each other's complement, with subsequences of each other, with concatenations of other domains (or their complements), etc.

Short Domains

DNA double strand


Reversible Hybridization

Long Domains


Irreversible Hybridization

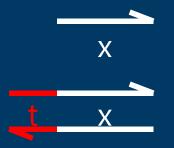
Strand Displacement

"Toehold Mediated"

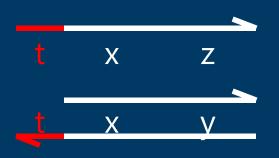
Strand Displacement

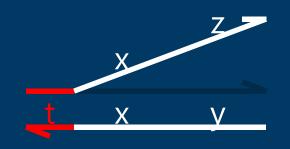
Toehold Binding

Strand Displacement


Branch Migration

Strand Displacement




Displacement

Strand Displacement

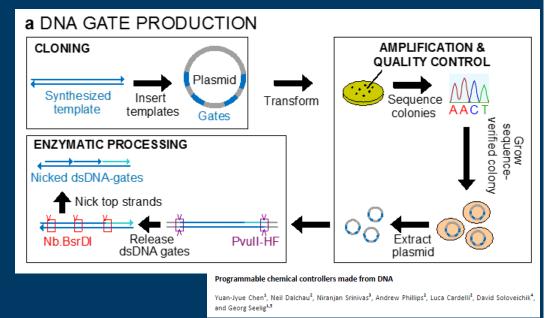
Irreversible release

Cannot proceed Hence will undo

Two-Domain Architecture

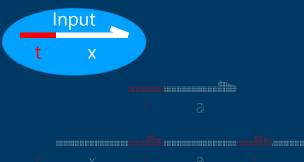
• Signals: 1 toehold + 1 recognition region

• Gates: "top-nicked double strands" with open toeholds

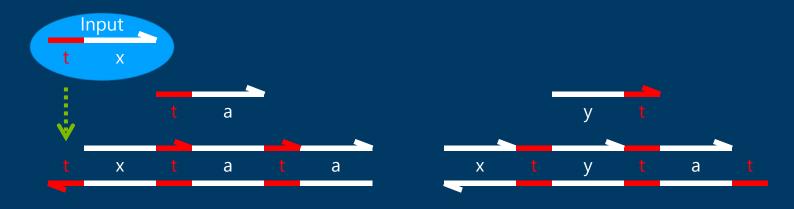

Two-Domain DNA Strand Displacement

Luca Cardelli

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.): Developments in Computational Models (DCM 2010). EPTCS 25, 2010, pp. 33-47. May 2010. Garbage collection "built into" the gate operation

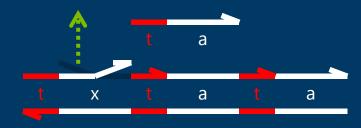

Plasmidic Gate Technology

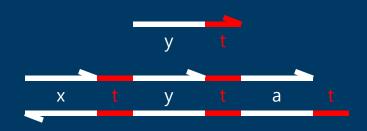
- Synthetic DNA is length-limited
 - Finite error probability at each nucleotide addition, hence ~ 200nt max
- Bacteria can replicate
 plasmids for us
 - Loops of DNA 1000's nt, with extremely high fidelity
 - Practically no structural limitations on gate fan-in/fan-out

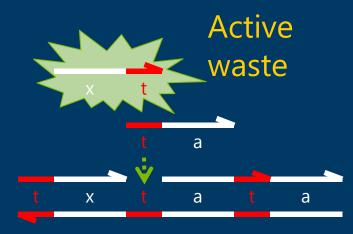


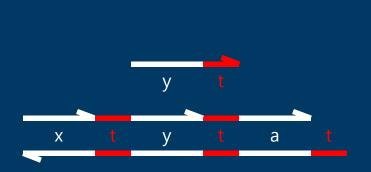
Only possible with two-domain architecture

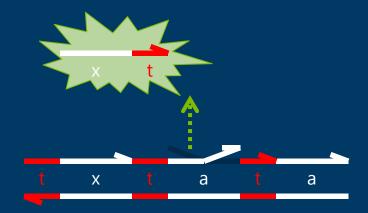
Transducer

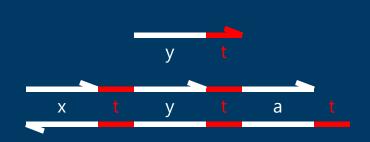


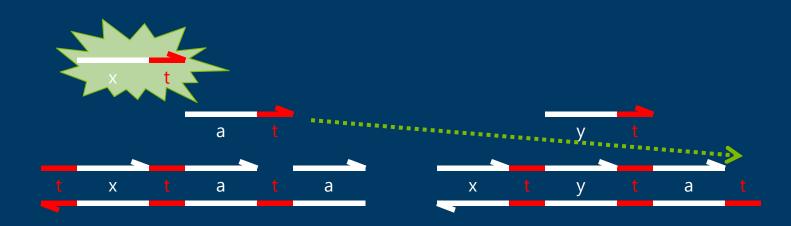


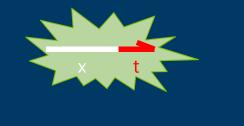


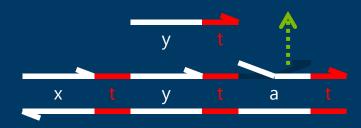

Built by self-assembly!

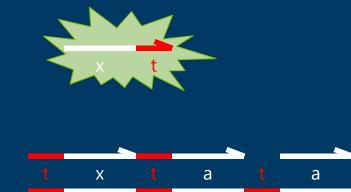

ta is a *private* signal (a different 'a' for each xy pair)

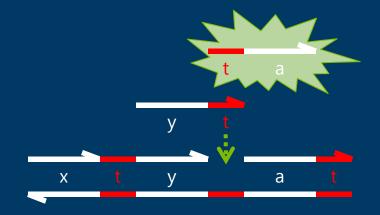


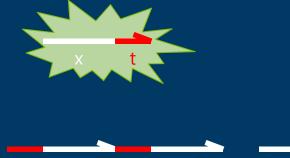


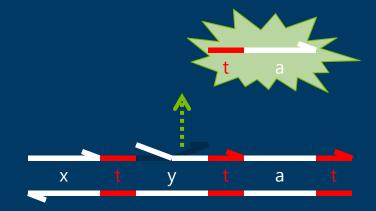


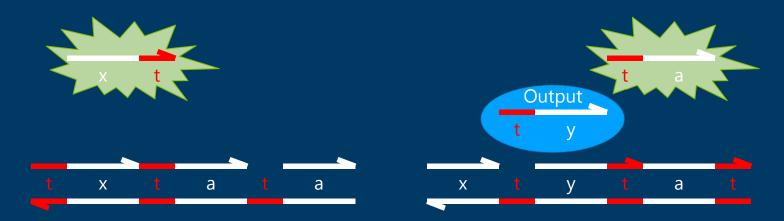


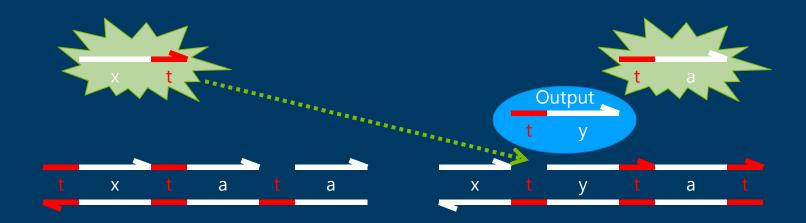


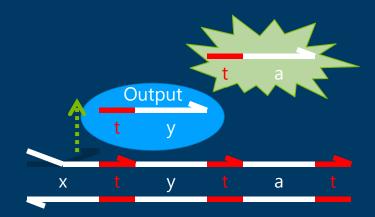

So far, a **tx** signal has produced an **at** cosignal. But we want signals as output, not cosignals.

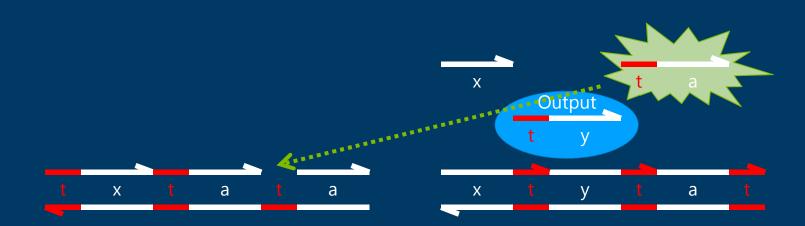


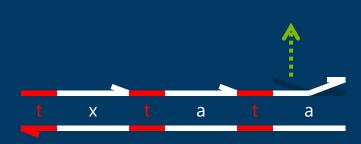


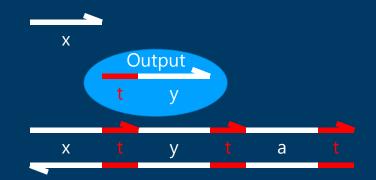


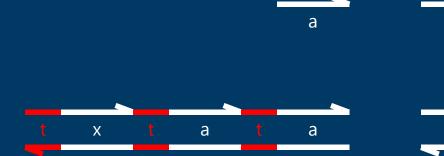


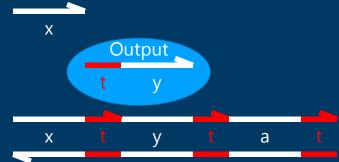


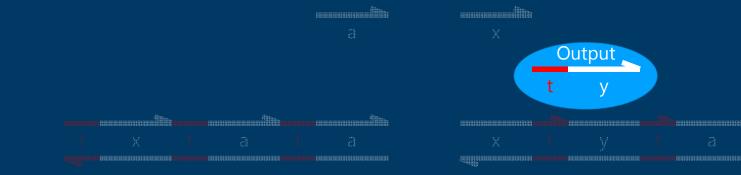


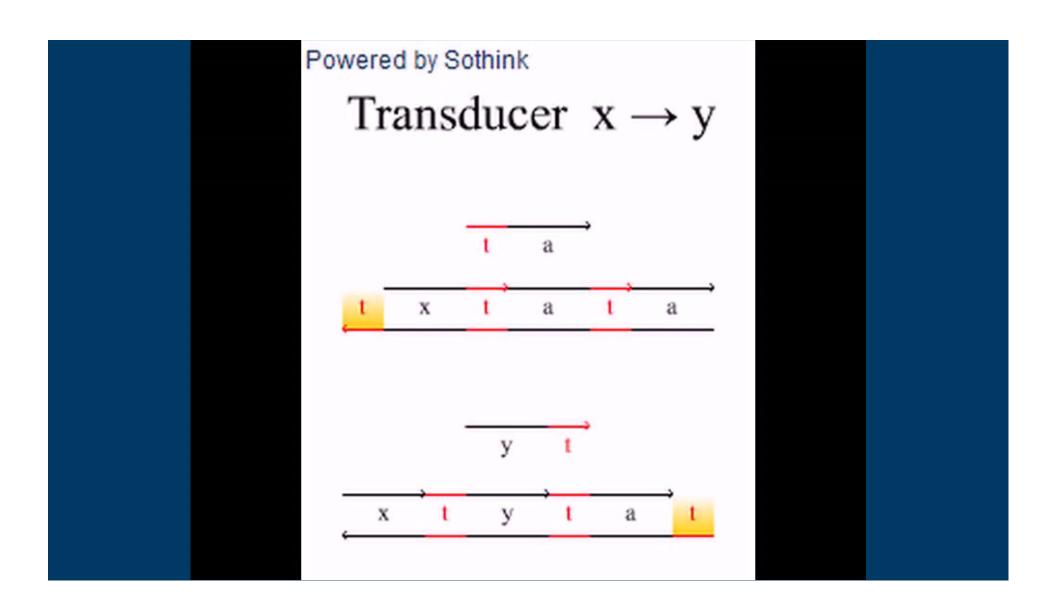

Here is our output ty signal.
But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).

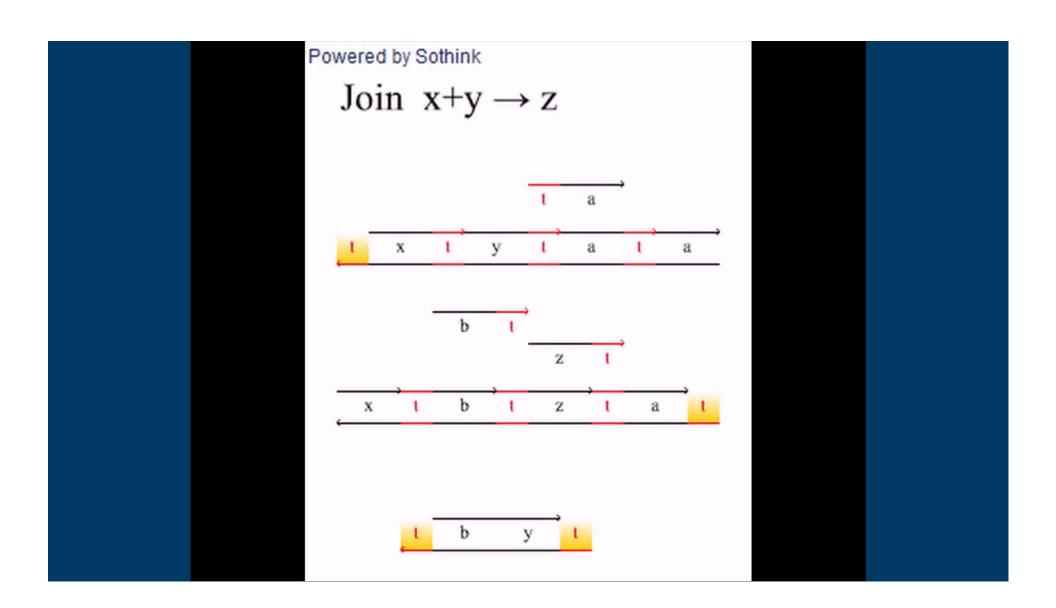






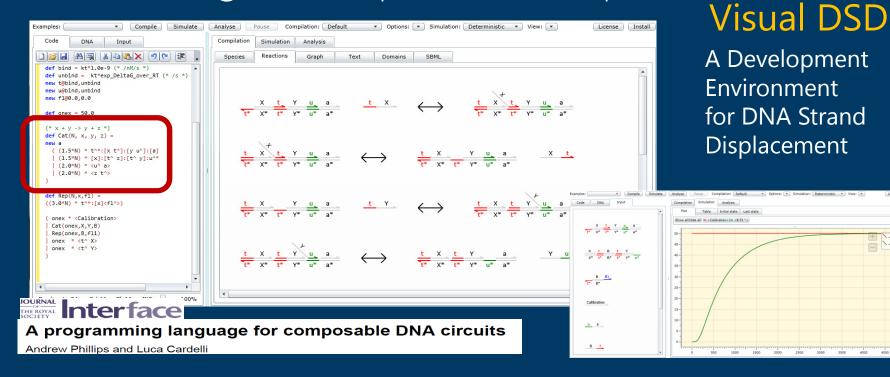






Done.

N.B. the gate is consumed: it is the energy source (no proteins, no enzymes, no heat-cycling, etc.; just DNA in salty water)



Tools and Techniques

A software pipeline for Molecular Programming

Development Tools MSRC Biological Computation Group

TRINIDE!

Calibration:

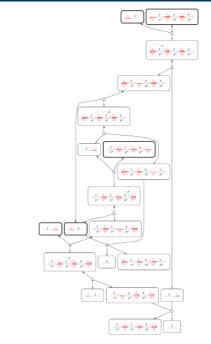
<B f1^>

A Language for DNA Structures

Describe the initial structures

Code	DNA	Input	
		» 🖻 🖪 🗙	? (*) (# (#)
		10000.0 poi x>; <t^ y="">;</t^>	
new t			
def T(N,	(x,y) =		
new a			
	<t^ a=""></t^>		
	<y t^=""></y>		
N *	t^*:[x t^]	:[a t^]:[a]	(* Input gate *)
N *	[x]:[t^ y]	:[t^ a]:t^*	(* Output gate *)
)			
(<t^ td="" x)<=""><td>T(1,x,y</td><td>))</td><th></th></t^>	T(1,x,y))	

Code	DNA	Input	
	x t x* t*	a <u>t</u> a* t*	a
	c <u>t</u> y	* <u>t</u> a	_
)	(* <mark>t</mark> * y	* <mark>t*</mark> a*	t*
_ <u>t</u>	x		
_ <u>t</u>	а		
	y <u>t</u>		

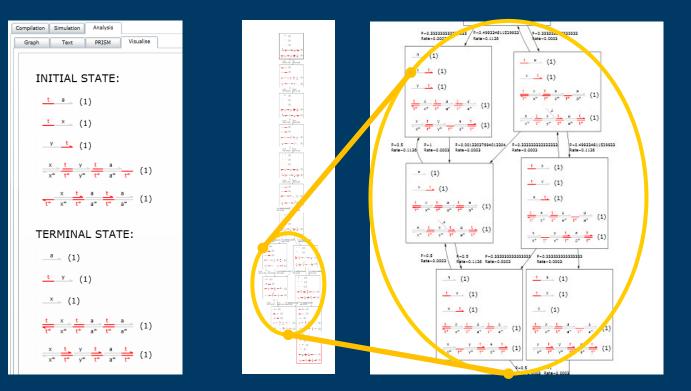

Compute Species and Reactions

 Recursively computed from the initial structures

ompilation	Simulation		••		
Species	Reactions	Graph	h Te	ext Domains	SBML
t*	x t x* t*	a <u>t</u> a* t*	a*	<u>t</u> x	
t T*	x + t x* t*	a <u>t</u> a* t*	a*	<u>t</u> a	h.
t t*	x x* t*	a t a* t*	a a*	<u>y t</u>	
t t*	x <u>t</u>	a <u>t</u> a* t*	a*	a	
t	× t	a a* t*	a	a t	

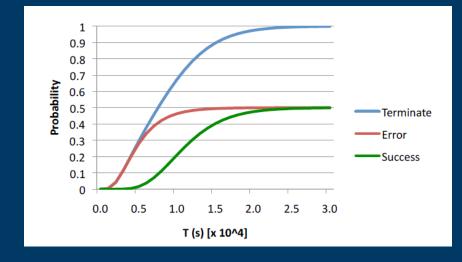
Compilation Simulation Analysis		
Species Reactions Graph	Text Domains SBML	
$\frac{x - t_{a}}{t^{a} - x^{a} - \frac{t_{a}}{t^{a}}} = \frac{a - t_{a}}{a^{a} - t^{a}} = \frac{a}{a^{a}}$	$\xrightarrow{\mathbf{s}} \underbrace{\mathbf{s}}_{\mathbf{s}} \underbrace{\mathbf{s}} \underbrace{\mathbf{s}} \underbrace{\mathbf{s}} \underbrace{\mathbf{s}} \underbrace{\mathbf{s}} \underbrace{\mathbf{s}} \underbrace{\mathbf{s}} $	
$\frac{t}{t^*} \xrightarrow{x^+} \frac{t}{t^*} \xrightarrow{a} \frac{t}{t^*} \xrightarrow{a} \frac{a}{a^*}$	$\longleftrightarrow \qquad \qquad$	
$\begin{array}{c c} t & x & a & t_a \\ \hline t^a & x^a & t^a & a^a & t^a & a^a \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\frac{t}{t^*} \frac{x}{x^*} \frac{t}{t^*} \frac{a}{a^*} \frac{t}{t^*} \frac{a}{a^*}$	$\longleftrightarrow \qquad \qquad \underbrace{ \frac{t}{t^*}}_{t^*} \xrightarrow{x_*} \underbrace{ \frac{t}{t^*}}_{a^*} \xrightarrow{a^*}_{a^*} \underbrace{ -a^*}_{a^*} \qquad \underbrace{ -a^* \underbrace{ t_*}}_{a^*}$	
$\begin{array}{c c} t & x & t & a \\ \hline t^{*} & x^{*} & t^{*} & a^{*} & t^{*} & a^{*} \end{array}$	$\xrightarrow{t a} \qquad \longrightarrow \qquad \xrightarrow{t x_{\infty}} \underbrace{t^{a}}_{t^{a}} \xrightarrow{a} \underbrace{t^{a}}_{a^{a}} \xrightarrow{a} \underbrace{a^{a}}_{a^{a}}$	a
$ \begin{array}{c} x & t & y & t & a \\ \hline x^{*} & t^{*} & y^{*} & t^{*} & a^{*} \end{array} $	$\xrightarrow{a} \underbrace{t_*}_{x^*} \longleftrightarrow \xrightarrow{x^*} \underbrace{t^*}_{t^*} \underbrace{y^*}_{y^*} \underbrace{t^*}_{t^*} \underbrace{a^*}_{a^*} \underbrace{t_*}_{t^*}$	
$\frac{x}{x^{n}} \frac{t}{t^{n}} \frac{y}{y^{n}} \frac{t}{t^{n}} \frac{a^{n}}{a^{n}} \frac{t}{t^{n}}$	$\longleftrightarrow \qquad \qquad \underbrace{ \begin{array}{c} x_{-} \underbrace{t}_{-} y_{-} \\ x^{+} \underbrace{t^{+}}_{T} y^{-} \underbrace{a_{-} \underbrace{t}_{-} \\ t^{+} a^{+} \underbrace{t^{+}}_{T} \end{array}}_{} \qquad \underbrace{ \begin{array}{c} t \\ a_{-} \end{array}}_{} \end{array}$	
$\begin{array}{c} x & t & y \\ \hline x^{\alpha} & t^{\alpha} & y^{\alpha} & t^{\alpha} & a^{\alpha} & t^{\alpha} \end{array}$	$\xrightarrow{v t_{*}} \longleftrightarrow \xrightarrow{x t_{*} y t_{*} a^{*} t_{*}}_{x^{*} t^{*} y^{*} t^{*} a^{*} t^{*}}_{t^{*}}$	
$\frac{x}{x^{\alpha}} \frac{t}{t^{\alpha}} \frac{y}{y^{\alpha}} \frac{t}{t^{\alpha}} \frac{a}{a^{\alpha}} \frac{t}{t^{\alpha}}$	$\longleftrightarrow \qquad \qquad \underbrace{ \begin{array}{c} x \\ x^{*} \end{array} }_{X^{*} t^{*} } \underbrace{ \begin{array}{c} y \\ y^{*} \end{array} }_{t^{*} t^{*} } \underbrace{ \begin{array}{c} a \\ t^{*} \end{array} }_{t^{*} } \underbrace{ \begin{array}{c} t \\ t^{*} \end{array} }_{t^{*} } \underbrace{ \begin{array}{c} t \\ t^{*} \end{array} }_{t^{*} } \end{array} }_{t^{*} t^{*} } \\ \end{array}$	
$\frac{x}{x^{*}} \frac{y}{t^{*}} \frac{t_{*}}{y^{*}} \frac{a}{t^{*}} \frac{t_{*}}{a^{*}}$	$\xrightarrow{x t_{*}} \xrightarrow{\qquad } \xrightarrow{x^{*} t^{*} y^{*} t^{*} a^{*} t^{*}}} \xrightarrow{x^{*} t^{*} y^{*} t^{*} a^{*} t^{*}}$	<u>x</u>

Reaction Graph and Export


Compilation	Simulation	Analysis				
Species	Reactions	Graph	Text	Domains	SBML	
Save as XML						
xml versio</td <th>on="1.0" encod</th> <th>ding="UTF-8"?></th> <td>,</td> <th></th> <th></th> <th></th>	on="1.0" encod	ding="UTF-8"?>	,			
	s="http://www	.sbml.org/sbml	/level2/versi	on1" level="2"	version="1">	
<model></model>						
	mpartments>					
	rtment id="c"					
	ompartments>					
<listofspe< td=""><th></th><th></th><td></td><th></th><th></th><th>1221211271</th></listofspe<>						1221211271
				ent="c" initialAr		
				ent="c" initialAr		
				ent="c" initialAr		
						ount="1" constant="false"/> alAmount="0" constant="false"
						ount="0" constant="false"/>
						alAmount="0" constant= raise />
						ount="0" constant="false"/>
						t="0" constant="false"/>
				="c" initialAmou		
						nstant="false"/>
						nstant="false"/>
<species< td=""><th>s id="s_id12" r</th><th>name="[x]:[t^</th><td>y]:[t^ a]{t^</td><th>*}" compartme</th><th>nt="c" initialAn</th><th>nount="1" constant="false"/></th></species<>	s id="s_id12" r	name="[x]:[t^	y]:[t^ a]{t^	*}" compartme	nt="c" initialAn	nount="1" constant="false"/>
<species< td=""><th>s id="s_id13" r</th><th>name="[x]:[t^</th><td>y]:[t^ a]:<</td><th>;a>[t^]" comp</th><th>artment="c" ini</th><th>tialAmount="0" constant="false</th></species<>	s id="s_id13" r	name="[x]:[t^	y]:[t^ a]:<	;a>[t^]" comp	artment="c" ini	tialAmount="0" constant="false
<species< td=""><th>s id="s_id14" r</th><th>name="[x]:[t^</th><td>y]{t^*}:[a t</td><th>^]" compartme</th><th>nt="c" initialAn</th><th>nount="0" constant="false"/></th></species<>	s id="s_id14" r	name="[x]:[t^	y]{t^*}:[a t	^]" compartme	nt="c" initialAn	nount="0" constant="false"/>
						tialAmount="0" constant="false
						nount="0" constant="false"/>
						int="0" constant="false"/>
				t="c" initialAme		
		name=" <t^ th="" y<=""><td>>" compartn</td><th>nent="c" initial/</th><th>Amount="0" co</th><th>nstant="false"/></th></t^>	>" compartn	nent="c" initial/	Amount="0" co	nstant="false"/>
<th></th> <th></th> <td></td> <th></th> <th></th> <th></th>						
<listofrea< td=""><th></th><th></th><td></td><th></th><th></th><th></th></listofrea<>						
		reversible="fals	se">			
	Reactants>					
		species="s_id3' species="s_id0'				
< spec	leskelerence s	species= s_idu	12			

Simulation

- Stochastic
- Deterministic
- "J|T"



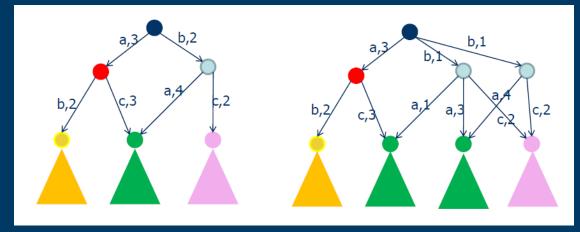
State Space Analysis

Modelchecking

Export to PRISM probabilistic modelchecker

THE ROYAL SOCIETY

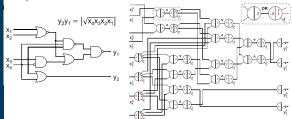
Design and analysis of DNA strand displacement devices using probabilistic model checking

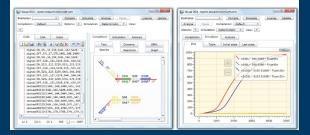

Matthew R. Lakin^{1,3,†}, David Parker^{2,†}, Luca Cardelli¹, Marta Kwiatkowska² and Andrew Phillips^{1,*}

Verification

Quantitative theories of system equivalence and approximation.

CONTINUOUS MARKOVIAN LOGICS AXIOMATIZATION AND QUANTIFIED METATHEORY

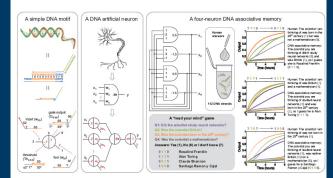

RADU MARDARE, LUCA CARDELLI, AND KIM G. LARSEN

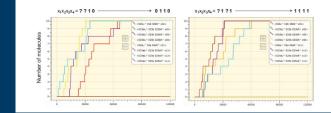


Related Work Supporter by our Tools

3 JUNE 2011 VOL 332 SCIENCE Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades

Lulu Qian¹ and Erik Winfree^{1,2,3}*





Square root of a 4-bit number

368 | NATURE | VOL 475 | 21 JULY 2011 Neural network computation with DNA strand displacement cascades

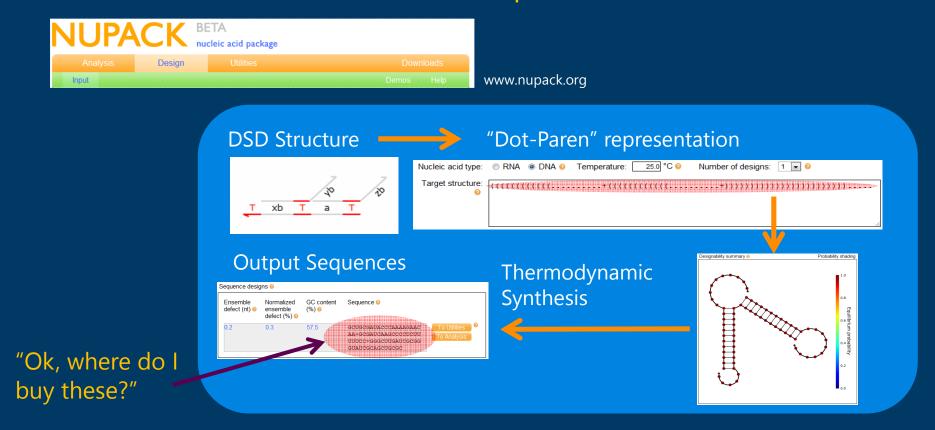
Lulu Qian¹, Erik Winfree^{1,2,3} & Jehoshua Bruck^{3,4}

Associative memory

Execution

A wetlab pipeline for Molecular Programming

Output of Design Process


• Domain structures

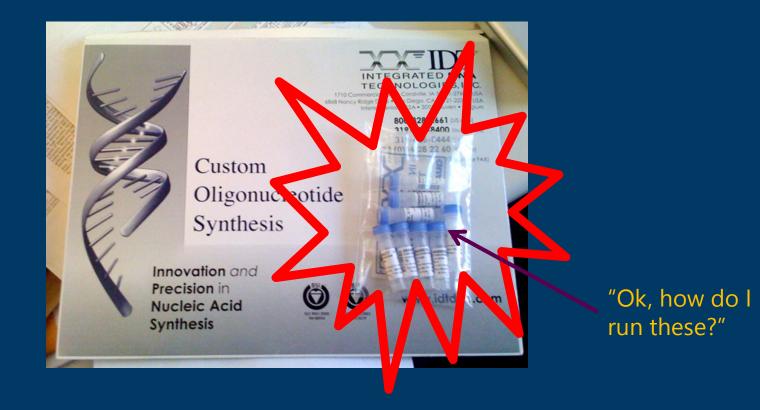
• (DNA sequences to be determined)

"Ok, how do I run this for real"

Code	DNA	Input]
**	x t x* t*	a t a* t*	a
x	* t* y	<u>t</u> a * t* a*	t*
_ <u>t</u>	x		
<u>_t</u>	а		
_у	t		

From Structures to Sequences

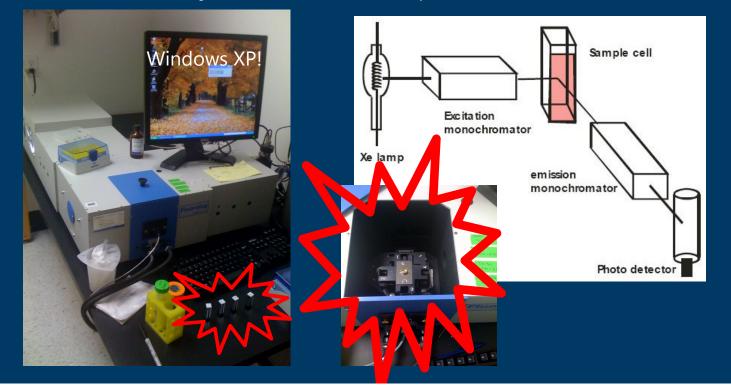
O, "DNA Synthesis"


dna synthesis		×	Search
About 8,610,000 results (0	.24 seconds)	Adv	anced sear
Custom DNA Syn www.Biomatik.com Quote.	<mark>thesis</mark> High Quality Custom Gene Synt	t hesis , Best Price Guarantee	Ads d! Get A
Order Gene at Ger www.GenScript.com expression	n <u>Script</u> \$0.29/bp. Any Gene in ANY Ve	ector Proven increase protein	
Gene Synthesis S www.epochlifescience Your Budgets!		.ow Price: Come on Down an	d Save
DNA synthesis comm amplification); Polyme	Wikipedia, the free encyclop only refers to: DNA replication - D rase chain reaction - enzymatic D DNA_synthesis - Cached - Similar	NA biosynthesis (in vivo DNA NA synthesis (in	
DNA replication, the b	Wikipedia, the free encyclop asis for biological inheritance, is a DNA researing - Cached - Simila	a fundamental	
Trade Your Synthesiz	echnologies - Home 🔂 Ocean er for Oligos DNA/RNA S ng Custom DNA Oligo - Custo Ned - Sing a	nsits - May 24 nis Modifications. Purification Oligos	ons. Gene

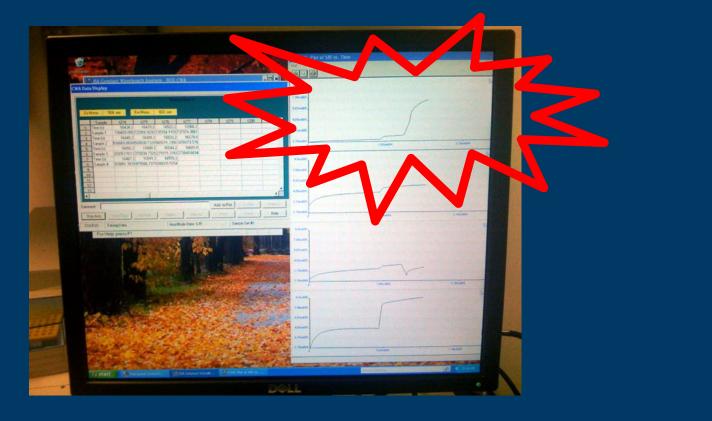
From Sequences to Molecules

 Copy&Paste from nupack

Molecules by FedEx



Add Water

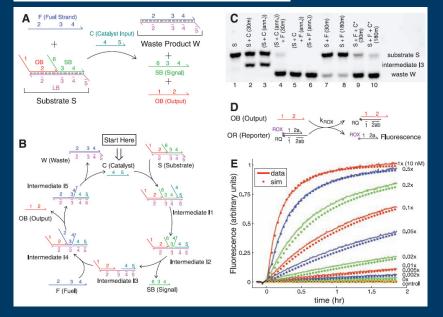


Execute (finally!)

• Fluorescence is your one-bit 'print' statement

Output

DNA strand length



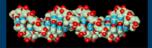
Various processing stages

Calibration scale

Delivery!

Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA David Yu Zhang, *et al. Science* **318**, 1121 (2007); DOI: 10.1126/science.1148532

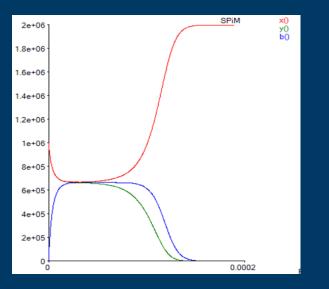
A Molecular Algorithm


Running something interesting with DNA

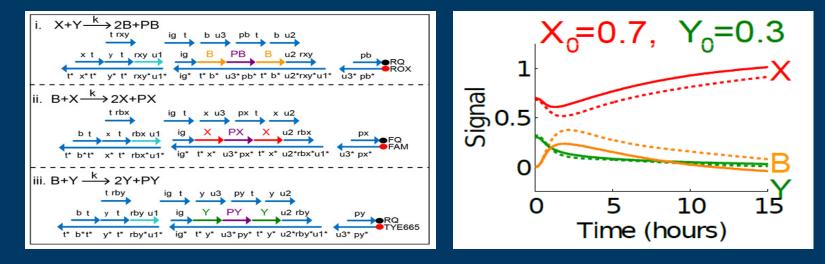
Approximate Majority Algorithm

- Given two populations of agents (or molecules)
 - <u>Randomly</u> communicating by radio (or by collisions)
 - · Reach an agreement about which population is in majority
 - By converting all the minority to the majority [Angluin et al., Distributed Computing, 2007]
- 3 rules of agent (or molecule) interaction
 - $\cdot X + Y \rightarrow B + B$
 - $\cdot \ \mathsf{B} \, + \, \mathsf{X} \to \mathsf{X} \, + \, \mathsf{X}$
 - $\cdot \ \mathsf{B} + \mathsf{Y} \to \mathsf{Y} + \mathsf{Y}$

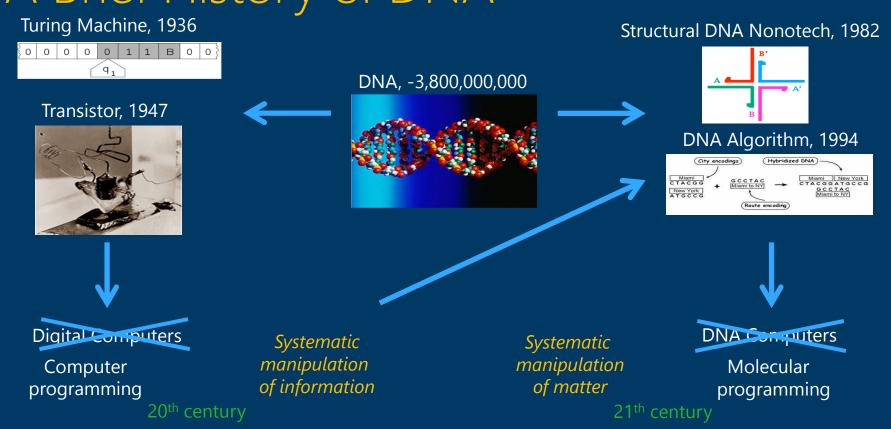
"our program"



Surprisingly good (in fact, optimal)


- Fast: reaches agreement in O(log n) time w.h.p.
 - \cdot O(n log n) communications/collisions
 - Even when initially #X = #Y! (stochastic symmetry breaking)
- Robust: true majority wins w.h.p.
 - · If initial majority exceeds minority by $\omega(\sqrt{n \log n})$
 - Hence the agreement state is stable

Stochastic simulation of worst-case scenario with initially #X = #Y



DNA Implementation, at U.W.

 Programmable chemical controllers made from DNA [Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David Soloveichik and Georg Seelig]

Final Remarks

A Brief History of DNA

Acknowledgments

- Microsoft Research
 - Andrew Phillips, Biological Computation Group
- Caltech
 - \cdot Winfree Lab
- U.Washington
 - \cdot Seelig Lab

Questions?

Resources

- Visual DSD at MSR
 http://research.microsoft.com/en-us/projects/dna/
- Molecular Programming Project at Caltech
 http://molecular-programming.org/
- Georg Seelig's DNA Nanotech Lab at U.W. CS&E
 http://homes.cs.washington.edu/~seelig/