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programme

– study reversibility in dna circuits

– define the algebra of dna circuits – reversible structures

– analyze the interplay between reversibility and causal
dependency

+ grasp causal dependency between coinitial reductions
+ investigate causal equivalent computations (permutation

equivalence)

– measure the expressive power of reversible structures

+ implementation of asynchronous RCCS



“natural” reversibility?

– in computational systems, computations are sequence of
irreversible steps

– implementations of these systems in physics or chemistry
are usually reversible

– reversibility means undoing the computation not in a
deterministic way:

states reached during a backward computation are states
that could have been reached during the forward
computation by just performing independent actions in a
different order
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formal “natural” reversibility?

since part of physics and chemistry is reversible,

what is the formal theory of reversibility in these fields?

said otherwise:

taking a natural reversible system, what properties may we
prove?
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reversibility in dna circuits (cf. Cardelli/Phillips)

– subsequences on a dna strand are called domains
• Subsequences on a DNA strand are called domains.

PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other
o With each other’s complement
o With subsequences of each other
o With concatenations of other domains (or their complements)
o Etc.

• Choosing domains (subsequences) that   suitably 
independent is a tricky issue that is still somewhat of an open 
problem (with a vast literature). But it can work in practice.

x zy

Domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

domains are independent of each other

– they cannot hybridize from any other domain except their complement

– there are very few short domains with reversible hybridizations

– and long domains with irreversible hybridizations
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reversibility in dna circuits

short-domains mediated strand displacementsStrand Displacement
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a better model for causality: three-domains structures

– a three-domains transducer
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causality and massive concurrency

dna circuits are massively concurrent:

– solutions consist of populations of species of strands and

– populations are not singletons

it is not possible to desynchronize processes that actually
interacted in the past
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causality and massive concurrency

the situation may be even worse due to bad designs
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a theory of massive concurrency?

reversibility/causality in massive concurrent systems has not
been studied

– theories have been defined for reversible calculi where processes
retain unique ids (Danos-Krivine, Phillips-Ulidowski,
Lanese-Mezzina-Stefani)

question: what is the distance between current theories of
reversible algebras and reversibility in massive
concurrent systems?
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the algebra of reversible structures

notation: u, v, w: ids
a, a, b, b: names and conames

x, x′: ids, names and conames
A, B, C: sequences of names;
A, B, C: sequences of elements u : a

A⊥, B⊥, C⊥: sequences of elements u : a
signals : u:a

gates : g input part.output part + ˆ

examples of gates:
ˆa . a′ . v:b u:a . ˆa′ . v:b

u:a .u′:a′ . v:bˆ



the algebra of reversible structures

notation: u, v, w: ids
a, a, b, b: names and conames

x, x′: ids, names and conames
A, B, C: sequences of names;
A, B, C: sequences of elements u : a

A⊥, B⊥, C⊥: sequences of elements u : a

signals : u:a

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

gates : g input part.output part + ˆ

examples of gates:
ˆa . a′ . v:b u:a . ˆa′ . v:b

u:a .u′:a′ . v:bˆ



the algebra of reversible structures

notation: u, v, w: ids
a, a, b, b: names and conames

x, x′: ids, names and conames
A, B, C: sequences of names;
A, B, C: sequences of elements u : a

A⊥, B⊥, C⊥: sequences of elements u : a

signals : u:a

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

gates : g input part.output part + ˆ

examples of gates:
ˆa . a′ . v:b u:a . ˆa′ . v:b

u:a .u′:a′ . v:bˆ



the algebra of reversible structures

notation: u, v, w: ids
a, a, b, b: names and conames

x, x′: ids, names and conames
A, B, C: sequences of names;
A, B, C: sequences of elements u : a

A⊥, B⊥, C⊥: sequences of elements u : a

signals : u:a

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

gates : g input part.output part + ˆ

examples of gates:
ˆa . a′ . v:b u:a . ˆa′ . v:b

u:a .u′:a′ . v:bˆ



the algebra of reversible structures

notation: u, v, w: ids
a, a, b, b: names and conames

x, x′: ids, names and conames
A, B, C: sequences of names;
A, B, C: sequences of elements u : a

A⊥, B⊥, C⊥: sequences of elements u : a

signals : u:a

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

gates : g input part.output part + ˆ

examples of gates:

ˆa . a′ . v:b

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

u:a . ˆa′ . v:b

u:a .u′:a′ . v:bˆ



the algebra of reversible structures

notation: u, v, w: ids
a, a, b, b: names and conames

x, x′: ids, names and conames
A, B, C: sequences of names;
A, B, C: sequences of elements u : a

A⊥, B⊥, C⊥: sequences of elements u : a

signals : u:a

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

gates : g input part.output part + ˆ

examples of gates:

ˆa . a′ . v:b

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

u:a . ˆa′ . v:b

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

u:a .u′:a′ . v:bˆ



the algebra of reversible structures
notation: u, v, w: ids

a, a, b, b: names and conames
x, x′: ids, names and conames
A, B, C: sequences of names;
A, B, C: sequences of elements u : a

A⊥, B⊥, C⊥: sequences of elements u : a

signals : u:a

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

gates : g input part.output part + ˆ

examples of gates:

ˆa . a′ . v:b

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

u:a . ˆa′ . v:b

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

u:a .u′:a′ . v:bˆ

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’



the algebra of reversible structures – syntax

structures : S ::=
0 (null)

| u:a (signal)
| g (gate)
| S | S (parallel)
| (new x)S (new)



the algebra of reversible structures – reductions

input capture: u:a | A⊥ . ˆa . B . C −→ A⊥ . u:a . ˆB . C

input release: A⊥ . u:a . ˆB . C −→ u:a | A⊥ . ˆa . B . C

output release: A⊥ . B . ˆu:a . C −→ u:a | A⊥ . B . u:a . ˆC

output capture: u:a | A⊥ . B . u:a . ˆC −→ A⊥ . B . ˆu:a . C
(plus the standard contextual rules about new, | , and ≡)

example: w:a | v:a . ˆu:b → w:a | v:a .u:bˆ | u:b
↗

v:a | w:a | ˆa .u:b
↘

v:a | w:a . ˆu:b
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pearls of expressive power

join input (a | b . c)

ˆa. b. u:c

input-guarded choice (a.b + a′.c)

(new v, e)( e. a. u:b | e. a′. u′:c | v:e )
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weak coherence

remark: it is possible to restrict the arguments about the
dynamics of reversible structures to structures
without news (this simplifies the theory)

a structure S is weak coherent whenever ids are uniquely associated to
names and co-names

(if u : α and u : α′ occur in S′ then either α = α′ or α = α′)

proposition: weak coherent reversible algebra may be implemented
into three domains dna circuits

– the correspondence is consistent and complete wrt reductions



causality: the tour

1. define causal dependence on coinitial reductions

– two reductions are dependent if they have either the signal
or the gate in common

– independent reductions can be swapped (diamond lemma)

2. define permutation equivalence, an equivalence on
derivations that is insensible

i. to swapping of independent reductions
ii. to the removal of reverse reductions

3. study the theory of permutation equivalence
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causal independence

a reduction can be addressed by the signal/gate that move

remark: in weak-coherent structures, names and co-names when
prefixed by ids are useless

– a signal u : a can be addressed by u

– a gate
ˆa.a′.v : b can be addressed by ˆaa′◦v

u : a.ˆa′.v : b can be addressed by uˆa′◦v

u : a.u′ : a′.v : bˆ can be addressed by uu′◦vˆ

cf. Lévy labels in lambda calculus
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causal independence/cont.

an example

u:a | ˆa . v:b | u:a . ˆv:b

u | ˆa◦v↙ ↘ u◦ˆv

u:a . ˆv:b | u:a . ˆv:b u:a | ˆa . v:b | u:a . v:bˆ | v:b

u◦ˆv↘ ↙ u | ˆa◦v

u:a . ˆv:b | u:a . v:bˆ | v:b

two coinitial reductions are causally independent if the corresponding
labels have no sublabel in common
(causal dependency is the opposite notion)
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the diamond lemma

Lemma. Let S
µ
−→ S′ and S ν

−→ S′′ be such that µ and ν are
causally independent. Then there exists S′′′ such that S′ ν

−→ S′′′ and
S′′

µ
−→ S′′′.



causal independence: issues

u:a | u:a | ˆa . v:b | w:c . u:aˆ
u | ˆa◦v
−→ u:a | u:a . ˆv:b | w:c . u:aˆ

u | w◦uˆ
−→ u:a . ˆv:b | w:c . ˆu:a

cannot be swapped because u | ˆa◦v and u | w◦uˆ have
sublabels in common

rationale:
– labels are not expressive enough to catch multiplicities

• a similar anomaly is present in Petri nets (cf. Degano,
Meseguer, Montanari)

– in massive concurrent systems, different occurrences of a same
molecule cannot be separated
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permutation equivalence

notation:
let µ1; · · · ;µn be the computation S1

µ1
−→ · · ·

µn
−→ Sn+1

let [µ]+ be the reverse label of µ defined as

[u | vˆa◦w]+ = ṽuˆ◦w̃
[vuˆ◦w]+ = u | vˆa◦w
[vu◦ˆw]+ = u | vu◦wˆ

[u | vu◦wˆ]+ = vu◦ˆw

permutation equivalence ∼ is the least equivalence relation
between computations closed under composition and such that:

µ; [µ]+
∼ ε

µ; ν ∼ ν;µ if µ and ν are coinitial and causally independent
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permutation equivalence: examples

− v:a | w:a | ˆa .u:b
v | ˆa◦u
−→ w:a | v:a . ˆu:b vˆ◦u

−→ v:a | w:a | ˆa .u:b

is computationally equivalent to ε

− v:a | w:a | ˆa .u:b | ˆa . z:c
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the standardization theorem

let µ1 ; · · · ; µn be a computation of a weak coherent structure
such that µn is the converse of µ1

– there is a shorter computation that is permutation
equivalent to µ1 ; · · · ; µn

the evolution of a gate in a computation without converse labels (normal)
is unidirectional
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coherence

a solution must contain exactly one molecule of every species

a weak-coherent structure is coherent whenever
– different gates have types with no id in common – the type

of a gate is the sequence of ids in the output part
– ids occur at most twice: one occurrence is positive and the

other is negative

u1:a1. · · · um:am . v1:b1 . · · · . vk:bk︸              ︷︷              ︸
negative occurrences

. ˆvk+1:bk+1 . · · · . vn:bn

examples: u:a | ˆa . v:a and v:a | u:a . v:aˆ are coherent

v:a | ˆa . v:a and ˆb . v:a | ˆa . v:a are not
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consequences of coherence

theorem: two coinitial computations of a coherent structure are
permutation equivalent if and only if they are cofinal

(false in weak-coherent structures)

theorem: the reachability problem in coherent structure has a
computational complexity of O(n2), where n is the number of gates in
the structure

(in weak-coherent structures, reachability is expspace complete)
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expressive power of coherent structures

coherent structures encode in a causally consistent way
asynchronous Reversible CCS

asynchronous Reversible CCS in a nutshell

memories m ::= 〈 〉 | 〈i〉n •m | 〈m, α,Q〉 •m

processes P ::= 0 |
∑

i∈I ai.Pi +
∑

j∈J aj |
∏

i∈I Pi | (new a)P

r-t processes R ::= m . P | R | R | (new a)R

transitions m . (a.P + Q) | m′ . (a + R)←→ 〈m′, a,Q〉 •m . P | 〈m, a,R〉 •m′ . 0
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the encoding of mixed choice in asynchronous RCCS

a.P + a is encoded as Ja.P + aKc =

(new c′,u, v)((ˆc . a .u:c′ | JPKc′ ) | ˆc . v:a)

u′:c↙↗ ↘↖ u′:c

(new c′,u, v)((ˆc . a .u:c′ | JPKc′ ) | u′:c . ˆv:a)
(new c′,u, v)((u′:c . ˆa .u:c′ | JPKc′ ) | ˆc . v:a)

remark: rccsmemories are (fine-grain) implemented by inactive
processes
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conclusions

possible research directions

– coherence is very hard to achieve in nature
+ biology prompts a thorough study of reversible concurrent

calculi where processes have multiplicities and the causal
dependencies between copies may be exchanged

– reversible structures may be extended with irreversible
combinators (that may be implemented in dna)

+ this makes possible to model standard irreversible
operators of programming languages in dna

– studying biological relevant problems in reversible
structures may be simpler

+ we already studied reachability; other issues are absence of
molecules/processes, persistence of materials, · · ·
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