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Abstract

We investigate the computing power of a restricted class of DNA strand displacement
structures: those that are made of double strands with nicks (interruptions) in the
top strand. To preserve this structural invariant, we impose restrictions on the single
strands they interact with: we consider only two-domain single strands consisting of
one toehold domain and one recognition domain. We study fork and join signal pro-
cessing gates based on these structures, and we show that these systems are amenable
to formalization and to mechanical verification.
Keywords: DNA Computing, Process Algebra.

1 Introduction

Among the many techniques being developed for molecular computing [6], DNA
strand displacement has been proposed as mechanism for performing computa-
tion with DNA strands [11, 4]. In most schemes, single-stranded DNA acts as
signals and double-stranded (or more complex) DNA structures act as gates.
Various circuits have been demonstrated experimentally [14, 11, 17, 18]. The
strand displacement mechanism is appealing because it is autonomous [5]: once
signals and gates are mixed together, computation proceeds on its own without
further intervention until the gates or signals are depleted (output is often read
by fluorescence). The energy for computation is provided by the gate structures
themselves, which are turned into inactive waste in the process. Moreover, the
mechanism requires only DNA molecules: no organic sources, enzymes, or tran-
scription /translation ingredients are required, and the whole apparatus can be
chemically synthesized and run in basic wet labs.

The main aims of this approach are to harness computational mechanisms
that can operate at the molecular level and produce nano-scale structures under
program control [13], and somewhat separately that can intrinsically interface
to biological entities [1]. The computational structures that one may easily im-
plement this way (without some form of unbounded storage) vary from Boolean
networks, to state machines, to Petri nets. The last two are particularly inter-
esting because they take advantage of DNA’s ability to encode symbolic infor-
mation: they operate on DNA strands that represent abstract signals.
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Fig. 1: Toehold-mediated DNA branch migration and strand displacement

The fundamental mechanism in many of these schemes is toehold mediated
branch migration and strand displacement [14, 17, 19], which implements a basic
step of computation. It operates as shown in Figure 1, where each letter and
corresponding segment represents a DNA domain (a sequence of nucleotides,
C,G,T,A) and each DNA strand is seen as the concatenation of multiple do-
mains. Single strands have an orientation; double strands are composed of
two single strands with opposite orientation, where the bottom strand is the
Watson-Crick, C — G, T — A, complement of the top strand. The ‘short’ do-
mains hybridize (bind) reversibly to their complements, while the ‘long” domains
hybridize irreversibly; the exact critical length depends on physical condition.
Distinct letters indicate domains that do not hybridize with each other.

In the first reaction of Figure 1, a short toehold domain t initiates binding be-
tween a double strand and a single strand. After the (reversible) binding of the
toehold, the z domain of the single strand gradually replaces the top = strand
of the double strand by branch migration. The branching point between the two
top z domains performs a random walk that eventually leads to displacing the
x strand. The final detachment of the top = strand makes the whole process
essentially irreversible, because there is no toehold for the reverse reaction. The
second reaction illustrates the case where the top domains do not match: then
the toehold binds reversibly and no displacement occurs. The third reaction
illustrates the more detailed situation where the top domains match only ini-
tially: the branch migration can proceed only up to a certain point and then
must revert back to the toehold: hence no displacement occurs and the whole
reaction reverts.

The fourth reaction illustrates a toehold exchange, where a branch migration
(of strand tz) leads to a displacement (of strand zt), but where the whole
process is reversible via a reverse toehold binding and branch migration. The
first (irreversible) and fourth (reversible) reactions are the fundamental steps
that can be composed to achieve computation by strand displacement.
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Fig. 2: Examples of allowable single and double strands: tz,xt, z, tizfti 21t

2 Two-domain Signals and Gates

We now describe some DNA strand displacement structures that process ab-
stract signals representd as DNA strands. Their function is to join input signals
and fork output signals. To achieve compositionality, so that gates can be com-
posed arbitrarily into larger circuits, it is necessary to first fix the structure of
the signals. Any given choice of signal structure requires a different gate archi-
tecture, for example for 4-domain signals [12] (signals composed of 4 segments
of different function), and 3-domain signals [3]. Here we present a new, stream-
lined, architecture based on 2-domain signals, where the gates can be combined
into arbitrary circuits (including loops), and where the waste products do not
interfere with the active gates.

Top-nicked double strands.

Double-stranded DNA (dsDNA) can have interruptions (nicks) on one strand
while remaining connected if the opposite strand has enough hold on the area
around the nick. We called such structures nicked double-stranded DNA (nds-
DNA). This excludes any long overhangs or any protrusions from the double-
strand. In particular, we work with top-nicked double-strands, where all the
nicks are on one strand (the top one by convention). A deviation from this
simple structure happens fleetingly during branch migration, but all the initial
and final species we use are ndsDNA.

We use t for short domains, x,y,z for long domains, and a,b,c for long domains
that are meant to be privately used by some construction. We write, e.g., tx for
a single-stranded DNA (ssDN A) strand consisting of a toehold ¢ followed by a
domain z, and similarly for xt. We write, e.g., txy for a fully complemented
double strand consisting of a continuous strand tzy at the top and its Watson-
Crick complement at the bottom. Finally, we write tzfy to indicate the same
double strand but with a nick at the top between z and y. In the figures, a
nick is indicated by an arrowhead and a discontinuity. We assume that domains
indicated by different letters are distinct, so that, e.g.,  does not hybridize with
Y, 2y, Yz, ty, or yt.

Examples of allowable single and double strands are shown in Figure 2. To
simplify our notation, we use an implicit equivalence illustrated in the bottom
part of the figure. Suppose we start with a regular double strand, and we nick it
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Fig. 3: Transducer T,,: initial state (all strands except tx) plus input tz, leading
to the reduction Ty, | tz — ty.

at the top (bottom left). Long segments between nicks remain attached to the
bottom strand, while short toehold segments can detach and reattach (bottom
right). We regard these reversible states as equivalent; the notation x¢fy then
indicates two equivalent situations, where the top t is either present or absent,
and where ¢ is implicitly exchanged with the environment. Hence, we can use
z'tTy to indicate an open toehold between z and y, because the toehold is
available (sometime). This way, we do not need to use separate notations for
temporarily occluded and temporarily open toeholds, which we would have to
regard as equivalent anyway (up to some kinetic occlusion effect).

Two-domain strand displacement gates.

Our gates are top-nicked dsDNA and our signals are two-domain ssDNA. This
simple setup is more expressive than it might appear at first. For example,
let us consider a single strand tx as encoding a signal, with the strand zt as
its cosignal, and consider the problem of constructing a signal transducer T,
(Figure 3) from a signal tx to a signal ty, with the reduction Ty, | tx — ty,
where | is parallel composition of components, and final waste is discarded.
All signals share the same toehold ¢, and are distinguished by the long domains
x,y,z, etc. As shown in Figure 4, the input ¢tz can initiate a signal/cosignal
cascade of strand displacements in the left double-strand that after two toehold
exchanges releases a private cosignal at (the segment a is privately used by the
Ty, transducer, with a distinct a for each xy pair). The at cosignal then initiates
a backward cascade in the right double strand that releases the desired output
signal ty at the fourth reaction. The release of ty is reversible, but the gate is
then locked down by the last two reactions. The locking down of the gate is
also used to reabsorb the xt and ta strands, by exploiting the z end of the right
structure and the a end of the left structure. In the end, only unreactive (no
exposed toeholds) dsDNA and ssDNA is left, except for the output ty.

Figure 4 lists the reactions of the transducer, with the initial structures
from Figure 3 shown inside rounded rectangles and the final structures inside
squared rectangles. Figure 5 shows the reactions of Figure 4 in the form of a
reaction graph. The initial species have a bold frame. Little squares indicate
reactions: irreversible reactions have hollow arrowhead for their products and
no arrowheads for their sources; reversible reactions have respectively hollow
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Fig. 5: Transducer T, | tx — ty reaction graph.

and bold arrowheads.

The structures in Figure 3 can be written in the notation described above
as Ty, = tixtlatia | ta | z'ty'ta’t | yt. The auxiliary signal ta contains the
private segment a, uniquely joining the two halves of T}, transducers, and we
can therefore assume that it will not interfere with other gates. The auxiliary
cosignal yt however contains a public segment y, which is necessary to release the
output signal. It is therefore important to maintain an invariant that no other
gate in the whole system absorbs yt, or in general any public cosignal, except in
response to inputs, othewise those gates would be improperly triggered, and 7%,
would be deprived of a necessary component. It is proper, and in fact necessary,
to absorb public cosignals in response to inputs; for example, a 7T}, transducer
and a T}, transducer may use “each other’s” yt cosignal without problem.

The transducer T, can be extended easily to a fork gate Fj,. such that
Foy. | tx — ty | tz, releasing two outputs from one input. This is shown in Fig-
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Fig. 6: Fork F,,.: initial state (all strands except tz) plus input tz, leading to
the reduction Fy,, | tx — ty | tz.
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Fig. 7: Catalyst Cy,.: initial state (all strands except tx, ty) plus inputs tz, ty,
leading to the reduction Cy,y. | tx | ty — ty | tz.

ure 6, where the left half of the structure is the same as in T},,. The construction
of this gate (and similarly of T, and of all the following gates), remains valid
when any of the inputs and ouputs are identified. That is, in this case, when
x=y, y=2z, X=z, or x=y=z. Some of these cases are in fact interesting: F,,,
amplifies the input signal until all such gates are exhausted. The fork gate can
be extended to a catalytic gate Cy, . such that Cy,. | tz | ty — ty | tz (Figure
7). The right half of C,,. is unchanged from F,, ., except that yt is not required
because it is produced by the left half. This gate, like the more general join
gate discussed next, takes two inputs, but absorbs them only if both inputs are
present [12]. If only the first input is present, it is returned to the soup by
reversibility of strand displacement between tx and xt. A catalytic gate of the
form C,,y is called an autocatalyst.

Let us now consider, in Figures 8 and 9, a binary join gate J.,. such that
Jzy= | tx | ty — tz (the generalization to additional outputs works as in the fork
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Fig. 8: Join J,,,: initial state (all strands except ¢z, ty) plus inputs tz, ty,
leading to the reduction Jg,, | tx | ty — tz
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Fig. 9: Join reduction J,,, | tx | ty — tz: final state plus output ¢z.

gate). Each distinct combination of xzyz requires choosing a distinct private
domain connecting the two halves of the gate; this private domain can however
be shared among a population of gates with the same input and output signals.
The main new feature in this gate is the additional cooperative displacement
structure ¢7by 't [15, 16] that absorbs a signal and a cosignal together, or neither
separately. Without it, and without the bt, tb components, the join gate would
leave behind a yt residual (all the other single strands, «t, zt, ta, are reclaimed).
Hence tTby't is a ‘garbage collector’ turning undesired active residuals to waste.
It is triggered only after the release of a private strand tb, so that the collector
does not reclaim an extraneous cosignal yt before the join gate has committed
to its inputs. Such an extraneous yt could come from a transducer T, or
from another join J,,, (before any input) or Jy,, (after the first input) causing
cross-gate interference, or even from within the same join, as in J,,,. The join
structure is easily generalized to any number of inputs; for example, Figure 10
shows a 3-input join with collectors.

Removing garbage is important because accumulated garbage slows down
future reactions by imposing a growing reverse pressure on the desired direction
of the reactions. We have designed all gates to remove all active garbage, but,
until the join gate, garbage removal did not require additional double strands.
In practical cases, for a fixed computation, garbage collection can be ignored
by initially taking some strands at high concentration, so that they kinetically
overcome the effects of garbage accumulation [12]: the gate designs are then
simpler. However, garbage accumulation has an undesirable effect also on the
algebra of the next section: extra terms are then left after reductions, making it
harder to compare circuits. In fact, the design of the algebra provided a strong
motivation for investigating garbage-free realizations.

Discussion: The double strand restrictions.

The restriction of allowing only ndsDNA structures has a number of poten-
tial advantages. The absence of any branching (¢f. [12, 3]) seems inherently
more trouble-free than complex structures that can interact in unexpected ways
through their protruding single-stranded parts. Here all double-stranded struc-
tures are quiescent (except for receptive toeholds on the bottom strand) and only
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Fig. 10: 3-Join Jy.y.: initial state plus inputs tw, tz, ty, leading to output tz.

single-stranded components have hybridization potential, eliminating the pos-
sibility that the gate themselves may polymerize, or may self-interact. These
structures also have a simple syntactical representation and simple reduction
rules, which simplify formal verification. Nothing prevents us from devising
precise syntax and reductions for more general structures [9], and there is no
good reason in principle to avoid more complex structures if they work well.
However, we have shown that our simplified structures already cover a surpris-
ing range of computation, and hence one can restrict the use of more complex
structures to the situations where they are actually needed, or where they some-
how perform better.

Discussion: The single strand restrictions.

Our hybridized structures start as ndsDNA, but we have to ensure that they re-
main ndsDNA through computation. (Except for transients, i.e., during branch
migrations that either revert harmlessly or lead to strand displacements.) This
invariant puts constraints on the allowable single strands. First of all, single
strands consisting only of long segments are inert because all the double strands
are fully complemented (except for toeholds), and hence they can be ignored.
A single strand of the form zty could bind to a double strand of the form z ¢!z,
leading to a configuration that is stable and is not ndsDNA. Therefore our single
strands cannot contain substrands of the form zty, and we are left with single
strands of the form, x™t™ or t"x™ or t"z"tP. The third class could lead to
stable configurations with two overlapping competing toeholds (t'z'tTy'¢ with
tat and tyt) and hence are ruled out too. Multiple toeholds in sequence bind
as stably as a long domain, so e.g. xttt would be as bad as the former xty,
and they can lead to competing toeholds: zt'tTy with ztt and tty. Hence we
do not allow consecutive toeholds in the top strands. Similarly, strands with
consecutive long segments can lead to stable competition: tzy and yzt over
ttzyzt. In the end, we are left only with xt or tz, and the only remaining

competition is between tz and xt over t'alt, where the stable structures are
ndsDNA. A final case to consider is tx and yt over tfzyft: if a single strand is
present it binds only reversibly, and if both are present they both bind stably
and release zy, so the stable structures are always ndsDNA. In fact, tfayft is
an important configuration that seems to add some power: without it we can
still implement garbage-collecting join gates, but apparently only by using more
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than one distinct toehold.

Discussion: The double strand restrictions, revisited.

We finally have to make sure that no reactive single strands other than ¢, tx,
xt, plus the unreactive x and xy, are ever released from double strands during
computation. This imposes another restriction on double strands: nicks should
break the top strand into segments of two domains or less. Otherwise, the
double strand tfxty’t could release a forbidden single strand xty in presence of

tz and yt. (We could still allow ¢'xyz't, but it would be unreactive.) Hence,
we are left with allowable double strands that are nicked concatenations of the
double-stranded elements ¢, z, tz, xt, Ty.

Multiple toeholds

In order to allow for reversible binding, toeholds cannot exceed a certain critical
length that depends on physical conditions. Reversible toehold binding is in turn
necessary to revert mismatches, as described in Introduction. Hence, in each
physical condition we can have only a fixed finite number of distinct toeholds
[12] (in contrast, we can have in principle an unbounded number of distinct long
domains). It is possible to use the available distinct toeholds to some advantage,
for example to separate the possible successful matches in different categories,
hence reducing the kinetic effects of unsuccessful matches: those have no logical
consequence but can slow down operation. Another use for distinct toeholds is
in garbage collection, to make sure that garbage collectors do not interfere with
normal operation.

We now discuss an alternative design for join gates that uses two distinct
toeholds, with the additional feature that trimolecular reactions (cooperative
displacements, as in Figure 8) are no longer required. However, we shall see
that this design does not generalize as easily to higher numbers of inputs. The
left half of this alternative join gate, J;, . (Figures 11 and 12), is the same
as the left half of Figure 8, except that a distinct toehold u is used for the
auxiliary strand ua. As a consequence, the yu cosignal can be garbage collected
immediately after release, because there is no interference with yt cosignals
elsewhere. Moreover, the right half of the gate can be simplified, because it no
longer needs to trigger the collection of yu. The collector itself, yiu, is simpler
and does not rely on trimolecular reactions. o

Note that all J’ join gates can share the same wu toehold, because the ap-
pearance of a zu cosignal indicates that some gate with second input ¢tz (say,
either J; . or J;, ) has received both inputs. In such a situation it is fine
to collect one zu strand permanently because one gate has received its inputs;
it does not matter which collector removes zu: the two collectors are in fact
identical. Therefore, for this gate design we need two distinct toeholds in total:
t and u.

Unfortunately, the collectors for gates with three or more inputs become
more complex, and in fact they closely resemble the collectors for 3-domain
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Fig. 12: Join J, . | tz | ty — t2: final state with output ¢z.

gates used in [3]. For a 3-way join J{Myz with inputs w,z,y and output z,
the non-collecting part is again similar to Jyqy. (Figure 10) except for ua and
corresponding domains. Here we need to design a collector for the cosignals
xt and yu that are displaced by the second and third inputs, where collection
should be triggered by the emergence of yu (wt arising from the first input is
reclaimed as before). The simple-minded solution for such a collector, in Figure
13, unfortunately releases a ty signal, which is an input signal. Introducing a
collector for this ty results in collecting ty signals even when the join gate does
not have all its inputs.

A solution (Figure 14) is to introduce an extra private domain b to break ty
into tb and wy, which can both be collected without inteference. This pattern
extends to collectors for n-join gates, with ¢ and u toeholds alternating on
the main collector double strand, so that no ordinary signals are released and
no ordinary cosignals are absorbed (e.g. w'tciuztbTuyfu for a 4-join [
collector main double strand, with private b,c). (

Fig. 13: Bad collector for 3-input join J;

wryz*
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These multiple-toehold collectors are therefore significanly more complex
than the ones in the previous sections. In the rest of the paper we consider
only single-toehold gate designs; another example of single-toehold design can
be found in [10].

Irreversible output release

In our two-domain gates, the final irreversible steps that commit the execution
of a gate happen only after the outputs are reversibly released. That means
that the released outputs from a gate G can revert before the irreversible com-
mit for G, and cause the inputs of G to be released again, as if G “had never
fired”. However, the outputs of G, even if only temporarily released, can have
a catalytic effect downstream (they can be used as inputs by other gates that
re-emit them from their outputs). In such a catalytic network, there can be
a sequence of events where in presence of its inputs the gate G “does not fire”
because neither it nor its inputs are consumed, but it still causes the permanent
activation of other gates downstream. For example, tz | tu | Tyy | Tpz | Cuyw
can produce either T, | ty | tw or tu | Tyy | Cuyw | tz depending on which T,
gate is irreversibly activated by tz, but can also produce Ty, | ty | tw | tz if Ty,
is first reversibly activated. The probability of such a sequence of events can be
arbitrarily reduced by introducing additional transducers ahead of the catalytic
gate (Tuy, | Tyrys | - | Tyny | Cuyw), SO as to increase the probability that an
irreversible step will happen during that sequence. This shows that two-domain
gates can emulate irreversible output release up to arbitrary precision (but not
exactly). Another way to approximate irreversible output release within a single
gate is to, e.g., use increasing amounts of the ta strand in Figure 3, to make the
sixth reaction of Figure 4 increasingly likely.

There are gate designs where an irreversible step happens necessarily after
all the inputs are absorbed and before (or at the same time that) all the outputs
are released. This is in fact the case for the designs in [12] for four-domain gates
and in [3](fig 9) for three-domain gates. But this does not seem possible with
our basic two-domain operations, because each operation is either irreversible
and does not release a (co)signal, or it releases a (co)signal but is reversible
(see Figure 16 in the next section), so an irreversible step cannot cause a later
release of a (co)signal.
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Fig. 15: Transducer T}, with irreversible output release.

We now discuss a design for a modified ndsDNA transducer that irreversibly
releases its output. More precisely, it is such that if the output is ever released,
then the input cannot be released back, and hence the gate commits on its input
(the output is still initially released reversibly, but if it is released it eventually
has to be released irreversibly). The modifications extend easily to gates with
multiple inputs and outputs because they affect only the private signals be-
tween the left and right halves. Figure 15 shows the reactions of the modified
transducer T;, = t'xtblatia | tha | x'tyTta’t | yt, where the initial strands
forming the transducer are highlighted. When compared with the transducer
reactions in Figure 4, the second reaction has turned from reversible to irre-
versible. This is achieved by an additional private domain b in the left double
strand, and by a corresponding three-domain strand that binds irreversibly be-
cause of a nick after b, and that releases the same at cosignal as before. The
right half of the transducer receiving that cosignal is unchanged. That second,
irreversible, reaction happens before the output is released, and even if the out-
put binds back temporarily before the final gate lockdown (provided as before by
the fifth and sixth reactions), the output cannot cause the input to be released
again.

This design uses three-domain strands, but since they include private do-
mains that limit their interactions, the ndsDNA structure happens to be pre-
served during execution. Moreover, the top strands of double stranded struc-
tures still all consist of one or two contiguous domains, hence no new three
domain strands can be released. The strands used for public signals are still
two-domain strands; hence these modified gates are signal-compatible with the
other two-domain gates, and can be used tactically where irreversible output
release is logically necessary. The algebraic framework of the next section, how-
ever, does not consider three-domain strands for simplicity.

3 Nick Algebra

In this section we provided a formal framework where we can perform calcu-
lations about the evolution of systems of top-nicked double strands. Domains
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are taken either from a finite set of short domains (toeholds) or from an un-
bounded set of long domains ranged over by x,y,z and a,b,c. Designs based on
a single toehold can be easily adapted to multiple toeholds to increase binding
discrimination and efficiency, but the converse is problematic: designs based on
distinct toeholds may fail if the toeholds are then identified. Here we require
only a single distinguished toehold, always indicated by the constant ¢, but it
would be easy to generalize to multiple toeholds.

An infix operator ‘.’ may be used to concatenate domains into single strands;
this is often omitted, particularly because all our single-strands have the form
t.xz or x.t, which are then usually written tx and xt (unless we wish to use long
identifiers for domains). Single strands ¢, x, and z.y remain implicit ‘waste’:
they are implicitly removed in reductions, and therefore do not appear in the
syntax.

Double strands are written underlined. We use an infix operator ‘I’ to repre-
sent a ‘nick’ on the top strand of a double-stranded sequence, an infix operator
‘.” (often omitted) to represent the unbroken concatenation of top and bottom
strands, and ¢ for the empty double strand. The segments between nicks are
only single or pair combinations of toeholds and domains.

A soup U is a finite multiset of single and double strands, with multiset
union indicated by ¢ | ’, and with a notation (vz)U for domain isolation. The
latter indicates that x is not used outside of U: this allows us to declare private
domains locally, and to combine constructions compositionally. In practice, it
means simply that all the domains indicated by v must be chosen distinct when
a global system is fixed for execution: the algebraic laws for (vz)U encode such
a guarantee. We also use U™ as an abbreviation for n copies of U in parallel
(] ). The resulting algebra is our nick algebra, which is strictly a subset of the
DSD (DNA Strand Displacement) language [9]. The grammar of terms is given
in Definition 1, with terminal symbols ¢, ¢, non-terminal symbols z (ranging
over domains), S, D, U, and using ‘!’ for syntactict alternatives; parentheses
are also liberally used for precedence.

Definition 1. Term Syntax

Su=txixt Single strand
Q:::¢12I§I@I@IMIDTD Double strand
U:=SI1DIUU!I (va)U Soup

The set of public domains pd(U) is the inductively defined set of those do-
mains not bound by v in U; in particular pd(t.z) = pd(x.t) = pd(z) = pd(t.x)
= pd(z.t) = {z}, pd(z.y) = {z,y}, pd(t) = pd(¢) = {}, and pd((va)U) =
pd(U) — {z}. Then, U{y/z} is the substitution of y for = in U, with the rep-
resentative cases t{y/x} =t, x{y/z} =y, z{y/x} = z for z # x, (v2)U){y/x}
= () (U{y/z}) for = ¢ Loy}, (o)0){y/a} = (va)U, and ()U){y/a} =
(va)(U{z/yH{y/x}) for a z ¢ pd(U) U {z, y}.

Algebraic equality (a binary congruence relation over the term syntax) is
indicated just by = and is axiomatized below with the monoid laws of (¢, ), the
commutative monoid laws of (¢, | ), and the scoping laws of (vx)U [8].
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Definition 2. Algebraic Equality

= is an equivalence relation

&:&, &:& = DlTDgzDQTD4
U1=U2, U3:U4 = U1|U3 = U2|U4
U =U; = (VIL')Ul = (VI)UQ
Di1(D5'D3) = (D17D)T Dy

¢'D = Di¢ =D

U | (U2 | Us) = (U | U2) | Us

Uy | Uy =0y | Uy

JlU=U|$=U

(U = ()(Uly/a}) iy ¢ pd(U)
(va)p = ¢

(ve)
(v

va)(Uy | Us) = Uy | (vz)Us if © ¢ pd(Uy)
z)(vy)U = (vy)(va)U

Note that (va)(vax)U = (vz)U is derivable. As an example of use of the isola-
tion operation, consider that it is always possible to bring all the v prefixes to the
top level by making all the private domains distinct: (va)tx | (va)tz = (va)tx

| (vy)ty = (vz)(vy)(tz | ty). This means that conflicts between local defi-
nitions can be resolved globally, while allowing local definition to be combined
without consideration of global conflicts.

The reduction relation U; — Us describes a single step of system evolution; it
is the smallest binary relation on U satisfying the rules below, where <> stands
for two reduction rules in opposite directions. Its symmetric and transitive
closure U; —* U; describes multi-step system evolution. In the reduction rules,
the single-stranded waste (¢, x, xy) is automatically removed because it can be
immediately identified as waste (as a consequence, the single strands ¢, x, zy
need not be included in the syntax). Alternatively, we could have made the
single-stranded waste explicit and introduced separate rules to remove it. The
double-stranded waste instead has a special degradation rule because it requires
a check over the whole double strand. The four basic reactions (exchange,
coverage, cooperation) are depicted in Figure 16.

Definition 3. Reduction

Di'ttatt Dy | to < Diftattt Dy | 2t Exchange
Di"t'eTDy | to — Dy Ttat Dy Left coverage
Dy T2t Dy | 2t — Dy Tat! Dy Right coverage
Dy "tlxy'tT Dy | tz | yt — Dy Ttalyti Dy Cooperation
D — ¢ if D not reactive Waste

Uy =Us = U |U=Us|U Dilution

Uy = U = (vo)Uy — (vo)Us Isolation

U, = UQ, Uy — Ug, Us=U; = Uy — U, Well—mixing
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>
DI t x D2 T ox ? Dt t x D2 x
—>

J— — H — —_
[0) R S ¢ y t D2 box ¥y ot D1t  x y t D2 X ¥

Fig. 16: The basic reactions (D1,D2 are arbitrary or empty double strands).

A double strand D is reactive if it can react in some context; that is, by
the first four rules. Hence it must be of the form D t'zt! Dy, DiTtafttD,,
Dyttt Dy, DiTattT Dy, or DthTxyTtTDg. Among the unreactive (waste) dou-
ble strands are thus ¢, x, zt, t, xy, t't, tite, xtit, xtTty, xtTtity, etc. The Waste
rule is really a convenience to simplify results of calculations; more generally,
as commonly done in process algebra, one would instead eliminate unreactive
components via an observational equivalence [8]. Two standard rules of pro-
cess algebra reflect the assumption of diluted and well-mixed chemical soups
[2, 3]. The Dilution rule says that adding some U to a soup U; does not make
it impossible for U; to reduce as before (although U may enable additional
reductions). The Well-mixing rule connects the reduction relation with the as-
sociativity /commutativity of =, implying that it is possible to mix the soup in
order to bring ’distant’ terms in syntactic contact (the reduction rules syntac-
tically require interacting terms to be next to each other).

4 Correctness

If Uy —* Us then U; may reduce to Uz, but it may also reduce to something else
since —* is a relation. When U; —* U, is used to state a correctness property
of system reduction, we say that this is a may-correctness property: the system
starting from U; may reduce to Us, but it may also wander in a different section
of state space and never be able to get to Us from there. A stronger property
is will-correctness, indicated by U; — Us, and defined as YU, U, —* U =
U —* U;. This means that although U; may wander to some U in some part
of the state space, it will always find a path to Us from there (it cannot avoid
finding a path to Us). If Uy —Y U,y and U, is the only terminal state, then we
can say that U; must reduce to Us. But will-correctness does not imply that
reduction necessarily terminates, and in particular if U —Y U we can say that
U is reversible. Since Uy —* U holds by reflexivity, will-correctness implies
may-correctness. All these properties are really examples of a large class of
reachability properties that could be expressed in a temporal logic.

It is convenient in the next examples and proofs to use a more pictographic
notation for nick algebra expressions, to highlight the positions of the toeholds.
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We use the following abbreviations (I is still needed in for x7y):

Definition 4. Two-Domain Pictograms

rx for tx Signal

i for xt Cosignal

Drx for Dtz (including D = ¢) Bound signal

D for zt'D (including D = ¢) Bound cosignal

D_D’  for D't'D’ (including D = ¢ or D’ = ¢) Bottom toehold
For example, the transducer from Figure 3 can be written as:

tiattatla | ta | 2ttyTta’t | yt explicit notation

—zaa | ra | zryra_ | yo pictogram notation

May-correctness for populations

We now show that the transducer may work correctly. Because of their chem-
ical origin, all components come in populations of identical molecules, and any
private domain can only be private to a population, and not to an individual
molecule. Hence we need to show that a populations of transducers, all sharing
the same private domain, may map an input population to a desired output
population. We use U™ as an abbreviation for n copies of U in parallel (| ).

Proposition 5. Transducer Ty, May-Correctness

Let T;ly = (V(I)((\_,Jha"la | ra | rryra_ ‘ yw)n)7
then Ty, | ra™ —* ry™.

Proof. Let Tyay = —xnana|ra|aryral [y for a # x,y, so that Ty, =
(va)(T'zay)™). We first show that Tpey | rz —* ry.
Tray | rZ

=_zwaalra|zryral |y | rx

©rx_ana | ra | xryral |y | xo

—~rrra_a | Tryra_ | Y ‘ xn ‘ an

S rrraca | Try_an | Y ‘ 1 ‘ ra

= rxrara | xry_an |y | o

— Try_an | Yn | TN

©r_yan | x| ry

— TYyaan ‘ ry

— Y

Hence (T'yay | rz)™ —* ry™ by induction, (T'zqy)" | rz™ —* ry™ by asso-
ciativity, (va)((T'zay)™ | ra™) =* (va)ry™ by isolation, and Ty, | ra™ —* cy™
by v-equivalence and by T, definition. O

We can similarly check the may-correctness of fork and join gates:

Proposition 6. Fork F) . May-Correctness

TYZ
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Let F} . = (va)((=xnana | ra | zrzryrac | 20 | y2)"™),
then Fy, . | ra™ =% ry™ | r2".

Proof. Let Fray. = _xnana | ra | arzryra_ | 27 |y~ fora # x,y, 2, so that Fy! . =

(va)((Fgayz)™). We first show that Fyay, | re =% ry | rz.

Foayz ‘ rr

=_zwawa | ra|zrzryral | 20 |y | 2o

©rx_ana | ra| xrzryral | 20 |y | 0

& rxra_a | wrzryral |z |y | T4 | an

“rara_a | zrzry_an |z | yn | @0 | ra

—rxrara | xrzry_an | 24 | yr | @o

—xrzry_an | 20 |y | zo

S xrz_yan |z | x| ry

S x_zwran |z | ry | rz

— TzY1an | ry | rz

— | ry ‘ rz

Hence (Fyay- | rz)” = (ry | r2)™ by induction, (Fgqyz)" | ra™ —ry™ | r2"
by associativity, (va)((Frayz)" | rzs) =" (va)(ry™ | r2") by isolation, and Fy, .
| rz™ —* ry™ | r2™ by v-equivalence and by F? . definition. O

TYZ

Proposition 7. Join Jy,, May-Correctness

Let J2,. = (va)(vb)((—x-ynana | ra | arbrzra_ | b | 20 | _bly_)™),
then J. . [ ra™ | ry™ = r2™.

Proof. Let Jyyar = _xyrana | ra | zrbrzra_ | b | 20 | _bly_ for a # z,v, z,
so that J3, . = (va)((Jzyaz)"). We first show that Joya, | ro | ry =" rz.

Joyar | 72 | vy

= _Tyrana ‘ ra | zrbrzra_ | b~ | Z7 ‘ \,bfyv ‘ rT ‘ ry

> rr_yana | ra | zrbrzra_ | b~ | 21 | \,bTyv | ry | ol

<> rxryvawa | ra | (Ererra,v | b“\ | | | vbTyv | il | y—|

S rrryra_a | rrbrzra_ | b ‘ 27 | vbTyv | T | Yn | an

S rrryra_a | xrbrz_an ‘ b | 2 | VbTyv | xn | Y | ra
— rTrryrara | zrbrz_an ‘ b ‘ z | vbTyv | TN | Yo

— xrbrz_an ‘ b ‘ 21 | vbTyv | T | Y

<~ xrb_zran ‘ b ‘ vbTyv ‘ Za ‘ Yy | rz

< x_brzhan ‘ vbTyv ‘ xn ‘ Ya | rz ‘ rb

— b zan | vbTyv | Y | rz ‘ rb

—)vbTyv | Yo | rz | rb

—rz

Hence (Jyyaz | rz | ry)™ —* r2™ by induction, (Jyyaz)™ | rz™ | ry™ =% r2"
by associativity, (va)((Jzyaz)" | r2™ | ry™) —* (va)r2z" by isolation, and J7, .

| ra™ | ry™ =" r2" by v-equivalence and by J; . definition. O

*
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Will-correctness for populations

Consider now the difficulties involved in proving more interesting properties. We
would like a transducer, for example, to work correctly in ‘all possible contexts’,
so that after proving its correcness we could use it freely in any larger circuit
without worrying about unwanted interferences. Unfortunately that is just not
true, because some context could absorb the y- strand, which is public, and
interfere with the transducer. One would have to consider instead ‘all possible
contexts that do not interfere with y-’. This is a rather awkward notion: for
compositionality one would have, for each component, to keep track of all the
elements in the context that the component might be interfering with. Moreover,
the transducer interferes with y~, and hence it interferes with (another copy or
another population of) itself.

Let us consider a simpler ‘progress’ property: that the transducer does not
deadlock with itself. This can be expressed as a will-correctness property, that
for any intermediate state U, if T}, | ta™ —* U then U —* ty™. This appears
to require an induction on all possible intermediate configurations U for any n.
Even for a fixed small n, the state space U can grow very large, which requires
the use of automated state exploration tools. Note also that an induction on
the length of —* is problematic because of the reversible exchange rule: infinite
sequences of reductions exist in almost all systems. In a stochastic interpretation
of reduction, actual convergence can often be achieved (with measure 1), and
this is another challenging property to prove. Here we simply illustrate how to
check a will-correctness property, for a single copy of a transducer:

Proposition 8. T, Will-Correctness

T;y | -2 =Y ry.  Moreover, ry is the only reachable terminal state.

Proof. We show that if T, | re —* U then U —* ry We enumerate all distinct
states U, up to algebralc equahty, arising from T, y | tz by all possible traces,
and then we check that each state can lead to ry. Assume x # y; indentation
means a branch in the derivation, with one continuation to the right and one
continuation down at the same level of indentation.

01 (VCL) _Iraa | ra ‘ Tryra_ | Yn | rxr

02. < (va) rr_aa | ra | Tryra_ ‘ Y | €T

03. < (va) rrra_a | Tryra_ | Yn | T | an

04. < (va) rara_a | zry_a~ |y |z | ra

05. < (va) rzrara | xry_an | yo | x4

06. = (va) xry_a~ | yo | x-

07. + (va) x_yran | x| ry

08. 4 (va) TYy~an | Yy

09. —ry

10. < (va) rzrara | x_yran | 0 | ry — 07
11. < (va) rzrara | xynan | ry — 08
12. < (va) rarara | ry — 09

13. + (va) rara_a | x_ya~ |z | ra | ry <10
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14. + (va) rrra_a | TaYyaan | ra | 7} 11

15. < (va) rrra_a | ra ‘ ry — 12

All other states (up to algebraic equality) can be reduced to these states by
well-mixing. We can then check that all these states have a path to state 9. The
case for x = y is similar: the state graphs is the same because, as can be seen
above, there is never both an x redex and a different y redex in the same state,
and when two x signals or cosignals can be chosen, it does not matter which
one is chosen, by well-mixing. O

The wisdom of crowds

When composing transducers, the may-correctness property T3/, | Ty, | rz™ —*
rz" follows simply from Proposition 5, but even just the will-correctness prop-
erty T}, | T,, | re =" rz (including # = z and y = z and = = y = z) does not
follow from Proposition 8, and requires the analysis of a product state space.
For example, T, | T,, can absorb the inputs rz | ry sequentially (converting
rz to a second ry and then ry to rz) or in parallel (each transducer starting to
process an input before producing an output). In fact, consider the following
transducer that uses a public ‘a’ domain instead of a private one, and therefore
is prone to interference:

Tray = _Traa ‘ ra | rryra_ | Yn

Tray by itself satisfies may and will-correctness as shown above for Ta}y, and
so does T}q,. But the two together do not satisfy the will-correctness property
of just producing rz on input rz, because the following ‘crosstalk’ derivation is
possible, where in the third step a~ goes to the ‘wrong’ gate:

Tway | Tyaw ‘ rr

= _ZTana | ra | rryra_ | Yn ‘ ~Yyana | ra ‘ Yyrrra_ ‘ foul ‘ rx
> rr_aia | ra ‘ Tryra_ | Yn | —Yyrana ‘ ra | Yyrrra_ | T | T
o rrra_a | Tryra_ | Y- ‘ —Yyaa | ra ‘ Yyrrra_ ‘ T ‘ T ‘ an
—rrra_a | Tryra_ | Y ‘ _Yyaa | ra ‘ Yyrr_an ‘ ol ‘ N ‘ ra
— rrrara | Tryra_ | Y | ~—Yyaa | ra | Yyrr_an | xn | xn
—aryra_ |y | —ynana | ra | yre_an | 20| @n

“axryral |y | _yrana | ra | y_xnan | 0 | rx

— xzryra_ | _yrana | ra | yrxaan | 0 | rx

— Tryra_ | —Yyara ‘ ra | ol | rT

The last state is final (no further progress can be made), and is not just the
expected rx (which can be obtained by a different derivation). Moreover, no
ry is ever produced. The system is deadlocked in a state where the expected
output rx has been produced, but many other active components have been left
to interfere with future operation. However, that last state, if supplied with
an additional ry, then unblocks and reduces just to ry | rz. Hence, although
Tray | Tyaz | rz =" rx, we have that Thay | Tyaz | r@ | ry =7 rz | ry (a formal
proof of this fact requires analyzing 115 states and 410 transitions, but DSD [9]
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Fig. 17: Interfering Transducers

and PRISM [7] can build the full state space of the system and show that it has
a single terminal state corresponding to rz | ry).

Now consider a system with two pairs of transducers: Ty, | Ty, | r2*. One
pair may deadlock as described above, but the other pair may proceed correctly,
producing ry as an intermediate result. That ry can unblock the first pair, so
that both pairs terminate correctly. That means that a large population of such
gates in practice does not deadlock easily over an input population of rz: each
pair of stuck gates can be unblocked by another pair correctly producing a ry,
and it is very unlikely that a large fraction of gates ends up being blocked, as
shown next.

The graphs in Figure 17 show individual runs of stochastic simulation in
DSD [9], with continuous time on the horizontal axis and discrete number of
copies on the vertical axis (all stochastic rates are set to 1.0). The left graph
is a simulation of one pair of transducers (Tyay | Tyas | r); this is a correct
execution because when the simulation stops we are left with one rz (<t™ x>
in the legend) and zero ra (<t~ a> in the legend). The middle graph shows an
incorrect execution of the same system, where one ra (and other components
not plotted) is left at the end. The right graph shows the simulation of a
system with four pairs of transducers (Ty,, | Ty, | rz*), in the already rare
case where all four pairs have deadlocked, leaving four copies of ra. If we take
a larger population of gates (T2 | T;90 | rz'% in Figure 18 left) we obtain
that virtually all runs execute correctly or nearly so. This can be verified also
by numerical simulation of the corresponding Ordinary Differential Equation
system (Figure 18 right, obtained by selecting a different simulation option in
DSD, where the vertical axis is now continuous and represents concentrations),
showing that the concentration of deadlocking gates, as indicated by ra, tends
asymptotically to zero.

This “wisdom of crowds” phenomenon, where wrong designs perform prac-
tically correctly, is an interesting system property that is worth analyzing and
possibly exploiting. Gate designs that are “logically wrong” due to interference
may deadlock in small populations, but large populations (of the kind usually
found in chemical systems) may still converge to an almost-correct solution
with high probability. Since the logically wrong designs are often more econom-
ical, there may be reasons for using them. For relatively small systems, the
exact probability of correct termination (at a given time point) can be com-
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Fig. 18: The wisdom of crowds

puted automatically by probabilistic modelchecking, with tools such as PRISM
[7]. Otherwise, asymptotic behavior can be investigated by stochastic or ODE
simulation as shown above.

5 Testing

Gate and circuits designs have been tested with the DSD tool [9]. We give a
simple example here, testing a combination of two fork and four join gates in
the following configuration, where yv, yw, zv, zw are four output domains (i.e.,
yv does not mean y.v in this section).

Fnyz‘
Fz?vw|
yvyv|
ywyw|

Z v,2UV ‘
’I'L
Z,W,ZW

rz™ | ru™ (input, m < n)

The DSD script for this example is listed in Figure 19. Since fork and join
gates accept inputs and produce outputs in a specific order, one should not
expect identical rates of production of yv,yw,zv,zw. (If desired, one can mix
populations of symmetric gates, to achieve symmetric behavior.) In Figure 20
we see an Ordinary Differential Equations simulation with unit rates for toehold
binding and unbinding, and with concentrations of 1.0 for the input signals and
10.0 for the gates; hence 10% of each gates is consumed during the computation.
The system has a total of 54 single strand species, 108 double strand species, and
172 reactions, and therefore 162 ODEs. At time 3 (left), yv is ahead out of the
gates, with zw trailing last. At time 300 (right) the computation has reached
90% completion with similar output quantities approaching the expected 0.5
concentration. One can further use the tool to examine the trajectories of all
the species in the system to check that no deadlock occurs, and that all the
structures are turned to output or to waste.
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This script can be run from a browser in DSD version 0.13 with ‘deterministic’ simulation
([9], http://lepton.research.microsoft.com/webdna). For reference, it contains the parametric
definitions of transducer gates (T, Figures), catalytic gates (C, Figure?), fork gates (F,
Figure 6) and join gates (J, Figure 8), although it then uses only fork and join gates.
directive sample 300.0 1000

directive plot <t~ yv>; <t~ yw>; <t~ zv>; <t~ zw>
new t@1.0,1.0

def T(N, x, y) = new a
(N *x <t~ a> | N * <y t™>
| N * t~*:[x t~]:[a t~]:[a]
I N o [x]: [t~ yl: [t~ al:t™* )
def C(N, x, y, z) = new a
(N * <t~ a> | N *x <z t™>
| N * t~*:[x t~]:[y t~]:[a t~]:[a]
| N * [x]:[t~ z]: [t~ yl: [t~ al:t~* )
def F(N, x, y, z) = new a
(N *x <t~ a> | N*x<yt>|N=x*<zt>
| N * t~*:[x t~]:[a t~]:[a]
| N o* [x]:[t~ 2z]:[t~ yl:[t~ al:t~* )
def J(N, x, y, z) = new a new b
(N *<t~a> | N*x<bt>|N=x*<zt>
| N * t~*:[x t~]:[y t~]:[a t~]:[a]
| N o* [x]:[t~ bl:[t~ z]: [t~ al:t~*
| N *x t™x:[b yl:t™* )
F(10, %, y, z) | F(10, u, v, w) | J(10, y, v, yv)

—~

J(10, y, w, yw | J0, z, v, zv) | J(10, z, w, zw)
|1 % <t~ x> | 1% <t™ uw )

Fig. 19: DSD script for fork/join circuit.

N R a3 P AT
‘ | N <t yws 3 N =<t~ yw=
‘ | Moscrosys 0.3 Wity
<t™ zwz> 3 <t™ zw>
0.2-3
0.1
J 03
= [ T T I : I
1 2 3 i 100 200 300

Fig. 20: Testing a fork/join circuit.
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6 Conclusions

We have shown how to implement fork and join gates via simple two-domain
structures, and how to implement them in a ‘clean’ way that automatically
removes all active garbage. We have provided a formal framework where we
can perform calculations and study such questions, and we have discussed some
simple correctness definitions and some complex behavioral properties. A for-
mal proof of absence of gate interference under all possible combinations and
numbers of gates and inputs will require an extensive amount of case analysis,
which likely needs to be automated, as well as the identification of appropriate
invariants. Alternatively, one may gain confidence in the designs by simulation
testing.
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